Refine
Year of publication
Document Type
- Article (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- mesenchymal stromal cell (2)
- mesenchymal stromal cells (2)
- ARDS (1)
- BCOR (1)
- BCORL1 (1)
- BMAC (1)
- Biotechnology (1)
- Bone marrow aspirate concentrate (1)
- Bone marrow aspiration (1)
- COVID-19 (1)
Institute
- Medizin (17)
Background: Culture-derived mesenchymal stromal cells (MSCs) exhibit variable characteristics when manufactured using different methods and different source materials. The purpose of this study was to assess the impact on MSC characteristics when different laboratories propagated MSCs from cultures initiated with BM aliquots derived from the same donor source material.
Methods and Methods: Five aliquots from each of three different BM donors were distributed to five independent laboratories. Three laboratories plated whole BM and two laboratories a mononuclear BM cell fraction. Four laboratories cultured in media supplemented with fetal bovine serum (FBS) and one laboratory used human platelet lysate (hPL). Initial cell seeding densities (i.e., P0) ranged from 19.7 × 103/cm2–282 × 103/cm2 and for second seeding (i.e., P1) 0.05 × 103–5.1 × 103 cells/cm2. Post-thawed MSCs from each laboratory were analyzed for cell viability, immunophenotype, tri-lineage differentiation, fibroblast colony-forming units (CFU-F), gene expression, and immunosuppressive activity.
Results: Transit times from BM collection to receipt by laboratories located in the United States ranged from 16.0–30.0 h and from 41.5–71.5 h for a laboratory in Asia. Post-thaw culture derived MSCs rom BM #1, #2, and #3 exhibited viabilities that ranged from 74–92%, 61–96%, and 23–90%, respectively. CFU activity from BM #1, #2, and #3 per 200 MSCs plated averaged 45.1 ± 21.4, 49.3 ± 26.8 and 14.9 ± 13.3, respectively. No substantial differences were observed in immunophenotype, and immunosuppressive activities. Global gene expression profiles of MSCs revealed transcriptome differences due to different inter-laboratory methods and to donor source material with the center effects showing greater molecular differences than source material.
Conclusion: Functional and molecular differences exist among MSCs produced by different centers even when the same BM starting material is used to initiate cultures. These results indicated that manufacturing of MSCs by five independent centers contributed more to MSC variability than did the source material of the BM used in this study. Thus, emphasizing the importance of establishing worldwide standards to propagate MSCs for clinical use.
Background: The number of Mesenchymal Stem/Stromal Cells (MSCs) in the human bone marrow (BM) is small compared to other cell types. BM aspirate concentration (BMAC) may be used to increase numbers of MSCs, but the composition of MSC subpopulations and growth factors after processing are unknown. The purpose of this study was to assess the enrichment of stem/progenitor cells and growth factors in BM aspirate by two different commercial concentration devices versus standard BM aspiration.
Methods: 120 mL of BM was aspirated from the iliac crest of 10 male donors. Each sample was processed simultaneously by either Emcyte GenesisCS® (Emcyte) or Harvest SmartPReP2 BMAC (Harvest) devices and compared to untreated BM aspirate. Samples were analyzed with multicolor flow cytometry for cellular viability and expression of stem/progenitor cells markers. Stem/progenitor cell content was verified by quantification of colony forming unit-fibroblasts (CFU-F). Platelet, red blood cell and total nucleated cell (TNC) content were determined using an automated hematology analyzer. Growth factors contents were analyzed with protein quantification assays. Statistical analyses were performed by ANOVA analysis of variance followed by Tukey’s multiple comparison test or Wilcoxon matched-pairs signed rank test with p < 0.05 for significance.
Results: Cell viability after processing was approximately 90% in all groups. Compared to control, both devices significantly enriched TNCs and platelets, as well as the CD45−CD73+ and CD45−CD73+CD90+ cell populations. Further, Harvest significantly concentrated CD45−CD10+, CD45−CD29+, CD45−CD90+, CD45−CD105+, CD45−CD119+ cells, and CD45dimCD90+CD271+ MSCs, whereas Emcyte significantly enriched CD45dimCD44+CD271+ MSCs. BM concentration also increased the numbers of CFU-F, platelet-derived growth factor, vascular endothelial growth factor, macrophage colony-stimulating factor, interleukin-1b, VCAM-1 and total protein. Neither system concentrated red blood cells, hematopoietic stem cells or bone morphogenetic proteins.
Conclusion: This data could contribute to the development of BMAC quality control assays as both BMAC systems concentrated platelets, growth factors and non-hematopoietic stem cell subpopulations with distinct phenotypes without loss of cell viability when compared to unprocessed BM.
Introduction: Adipose-derived stromal cells (ASCs) are a promising resource for wound healing and tissue regeneration because of their multipotent properties and cytokine secretion. ASCs are typically isolated from the subcutaneous fat compartment, but can also be obtained from visceral adipose tissue. The data on their equivalence diverges. The present study analyzes the cell-specific gene expression profiles and functional differences of ASCs derived from the subcutaneous (S-ASCs) and the visceral (V-ASCs) compartment.
Material and Methods: Subcutaneous and visceral ASCs were obtained from mouse inguinal fat and omentum. The transcriptional profiles of the ASCs were compared on single-cell level. S-ASCs and V-ASCs were then compared in a murine wound healing model to evaluate their regenerative functionality.
Results: On a single-cell level, S-ASCs and V-ASCs displayed distinct transcriptional profiles. Specifically, significant differences were detected in genes associated with neoangiogenesis and tissue remodeling (for example, Ccl2, Hif1α, Fgf7, and Igf). In addition, a different subpopulation ecology could be identified employing a cluster model. Nevertheless, both S-ASCs and V-ASCs induced accelerated healing rates and neoangiogenesis in a mouse wound healing model.
Conclusion: With similar therapeutic potential in vivo, the significantly different gene expression patterns of ASCs from the subcutaneous and visceral compartments suggest different signaling pathways underlying their efficacy. This study clearly demonstrates that review of transcriptional results in vivo is advisable to confirm the tentative effect of cell therapies.
During the past 15 years there have been dramatic changes in the medical landscape, particularly in oncology and regenerative medicine. Cell therapies have played a substantial part in this progress. Cellular immunotherapies can use immune cells, such as T cells or natural killer cells that, after functional modification ex vivo, exert powerful anti-cancer effects when given to the patient. Innovative technologies, such as re-programming terminally differentiated cells into pluripotent stem cells or into other cell types and applying specific enzymes to more precisely edit the human genome, are paving the way towards more potent cell and gene therapies.
Mesenchymal stromal cells are promising cellular immunotherapeutics, which also have potential for use in tissue engineering strategies and other regenerative medicine applications. However, substantial gaps in our knowledge of their biology and therapeutic efficacy present major challenges to their sustainable implementation in the clinical routine.
In this article, progress in the field of cell therapeutics during the past 15 years will be briefly discussed, with a focus on mesenchymal stromal cells, highlighting the impact of this field on patient care.
We show that, under in vitro conditions, the vulnerability of astroglia to hypoxia is reflected by alterations in endothelin (ET)-1 release and capacity of erythropoietin (EPO) to regulate ET-1 levels. Exposure of cells to 24 h hypoxia did not induce changes in ET-1 release, while 48–72 h hypoxia resulted in increase of ET-1 release from astrocytes that could be abolished by EPO. The endothelin receptor type A (ETA) antagonist BQ123 increased extracellular levels of ET-1 in human fetal astroglial cell line (SV-FHAS). The survival and proliferation of rat primary astrocytes, neural precursors, and neurons upon hypoxic conditions were increased upon administration of BQ123. Hypoxic injury and aging affected the interaction between the EPO and ET systems. Under hypoxia EPO decreased ET-1 release from astrocytes, while ETA receptor blockade enhanced the expression of EPO mRNA and EPO receptor in culture-aged rat astroglia. The blockade of ETA receptor can increase the availability of ET-1 to the ETB receptor and can potentiate the neuroprotective effects of EPO. Thus, the new therapeutic use of combined administration of EPO and ETA receptor antagonists during hypoxia-associated neurodegenerative disorders of the central nervous system (CNS) can be suggested.
Mesenchymal stem/stromal cells (MSCs) feature promising potential for cellular therapies, yet significant progress in development of MSC therapeutics and assays is hampered because of remarkable MSC heterogeneity in vivo and in vitro. This heterogeneity poses challenges for standardization of MSC characterization and potency assays as well as for MSC study comparability and manufacturing. This review discusses promising marker combinations for prospective MSC subpopulation enrichment and expansion, and reflects MSC phenotype changes due to environment and age. In order to address animal modelling in MSC biology, comparison of mouse and human MSC markers highlights current common ground of MSCs between species.
The use of fetal bovine serum (FBS) as a cell culture supplement is discouraged by regulatory authorities to limit the risk of zoonoses and xenogeneic immune reactions in the transplanted host. Additionally, FBS production came under scrutiny due to animal welfare concerns. Platelet derivatives have been proposed as FBS substitutes for the ex-vivo expansion of mesenchymal stem/stromal cells (MSCs) since platelet-derived growth factors can promote MSC ex-vivo expansion. Platelet-derived growth factors are present in platelet lysate (PL) obtained after repeated freezing-thawing cycles of the platelet-rich plasma or by applying physiological stimuli such as thrombin or CaCl2.PL-expanded MSCs have been used already in the clinic, taking advantage of their faster proliferation compared with FBS-expanded preparations. Should PL be applied to other biopharmaceutical products, its demand is likely to increase dramatically. The use of fresh platelet units for the production of PL raises concerns due to limited availability of platelet donors. Expired units might represent an alternative, but further data are needed to define safety, including pathogen reduction, and functionality of the obtained PL. In addition, relevant questions concerning the definition of PL release criteria, including concentration ranges of specific growth factors in PL batches for various clinical indications, also need to be addressed. We are still far from a common definition of PL and standardized PL manufacture due to our limited knowledge of the mechanisms that mediate PL-promoting cell growth. Here, we concisely discuss aspects of PL as MSC culture supplement as a preliminary step towards an agreed definition of the required characteristics of PL for the requirements of manufacturers and users.
Introduction: Aim of this study was to reduce blood loss caused by diagnostic blood sampling and to minimize the development of anemia in a high-risk group of mechanically ventilated medical intensive care patients. We therefore implemented a “blood-saving bundle” (BSB) combining a closed-loop arterial blood sampling system, smaller sampling tubes, reduced frequency of blood drawings, and reduced sample numbers.
Methods: The study included all patients from our medical ICU who were ventilated for more than 72 hours. Exclusion criteria were: acute or chronic anemia on admission, bleeding episode(s) during the ICU stay, or end-of-life therapy. The BSB was introduced in 2009 with training and educational support. Patients treated in 2008, before the introduction of the BSB, served as a control group (n = 41, 617 observation days), and were compared with patients treated in 2010 after the introduction of the BSB (BSB group, n = 50, 559 observation days). Primary endpoints were blood loss per day, and development of anemia. Secondary endpoints were numbers of blood transfusions, number of days on mechanical ventilation, and length of the ICU stay.
Results: Mean blood loss per ICU day was decreased from 43.3 ml (95% CI: 41.2 to 45.3 ml) in the controls to 15.0 ml (14.3 to 15.7 ml) in the BSB group (P < 0.001). The introduction of a closed-loop arterial blood sampling system was the major contributor to this effect. Mean hemoglobin concentrations showed no significant differences in both groups during the ICU stay. Hemoglobin values <9 g/dl, however, were recorded in 21.2% of observation days in the controls versus 15.4% in the BSB group (P = 0.01). Units of transfused red blood cells per 100 observation days decreased from 7 to 2.3 (P < 0.001). The mean number of ventilation days was 7.1 days (6.1 to 8.3 days) in the controls and 7.5 days (6.6 to 8.5 days) in the BSB group (P = NS). In total, patients in the BSB group stayed in ICU for a mean of 9.9 days (8.6 to 11.3 days), compared to a mean ICU stay of 13.0 days (10.9 to 15.4 days) in the control group (P = 0.014). Due to the longitudinal study design, however, we cannot exclude uncontrolled confounders affecting the transfusion frequency and mean ICU stay.
Conclusion: Our BSB could be easily implemented and was able to reduce diagnostic blood loss.
Background and Objectives: Patient blood (more accurately: haemoglobin, Hb) management (PBM) aims to optimize endogenous Hb production and to minimize iatrogenic Hb loss while maintaining patient safety and optimal effectiveness of medical interventions. PBM was adopted as policy for patients by the World Health Organization (WHO), and, all the more, should be applied to healthy donors. Materials and Methods: Observational data from 489 bone marrow (BM) donors were retrospectively analysed, and principles of patient blood management were applied to healthy volunteer BM donations. Results and Conclusion: We managed to render BM aspiration safe for donors, notably completely avoiding the collection of autologous blood units and blood transfusions through iron management, establishment and curation of high-yield aspiration technique, limitation of collection volume to 1·5% of donor body weight and development of volume prediction algorithms for the requested cell dose.
Mutations of the isocitrate dehydrogenase-1 (IDH1) and IDH2 genes are among the most frequent alterations in acute myeloid leukemia (AML) and can be found in ∼20% of patients at diagnosis. Among 4930 patients (median age, 56 years; interquartile range, 45-66) with newly diagnosed, intensively treated AML, we identified IDH1 mutations in 423 (8.6%) and IDH2 mutations in 575 (11.7%). Overall, there were no differences in response rates or survival for patients with mutations in IDH1 or IDH2 compared with patients without mutated IDH1/2. However, distinct clinical and comutational phenotypes of the most common subtypes of IDH1/2 mutations could be associated with differences in outcome. IDH1-R132C was associated with increased age, lower white blood cell (WBC) count, less frequent comutation of NPM1 and FLT3 internal tandem mutation (ITD) as well as with lower rate of complete remission and a trend toward reduced overall survival (OS) compared with other IDH1 mutation variants and wild-type (WT) IDH1/2. In our analysis, IDH2-R172K was associated with significantly lower WBC count, more karyotype abnormalities, and less frequent comutations of NPM1 and/or FLT3-ITD. Among patients within the European LeukemiaNet 2017 intermediate- and adverse-risk groups, relapse-free survival and OS were significantly better for those with IDH2-R172K compared with WT IDH, providing evidence that AML with IDH2-R172K could be a distinct entity with a specific comutation pattern and favorable outcome. In summary, the presented data from a large cohort of patients with IDH1/2 mutated AML indicate novel and clinically relevant findings for the most common IDH mutation subtypes.