Refine
Document Type
- Article (2)
- Conference Proceeding (2)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Glioblastoma (1)
- MGMT (1)
- Obesity (1)
- Temozolomide (1)
- anti-angiogenic therapy (1)
- glioblastoma (1)
- macrophage polarization (1)
- therapy resistance (1)
- tumor angiogenesis (1)
Institute
- Medizin (4)
Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti‐angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin‐2 (Ang‐2) as a potential target in both naive and bevacizumab‐treated glioblastoma. Ang‐2 expression was absent in normal human brain endothelium, while the highest Ang‐2 levels were observed in bevacizumab‐treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang‐2, whereas the combined inhibition of VEGF and Ang‐2 leads to extended survival, decreased vascular permeability, depletion of tumor‐associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206+ (M2‐like) macrophages were identified as potential novel targets following anti‐angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang‐2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang‐2 may potentially overcome resistance to bevacizumab therapy.
Purpose: The role of obesity in glioblastoma remains unclear, as previous analyses have reported contradicting results. Here, we evaluate the prognostic impact of obesity in two trial populations; CeTeG/NOA-09 (n = 129) for MGMT methylated glioblastoma patients comparing temozolomide (TMZ) to lomustine/TMZ, and GLARIUS (n = 170) for MGMT unmethylated glioblastoma patients comparing TMZ to bevacizumab/irinotecan, both in addition to surgery and radiotherapy.
Methods: The impact of obesity (BMI ≥ 30 kg/m2) on overall survival (OS) and progression-free survival (PFS) was investigated with Kaplan–Meier analysis and log-rank tests. A multivariable Cox regression analysis was performed including known prognostic factors as covariables.
Results: Overall, 22.6% of patients (67 of 297) were obese. Obesity was associated with shorter survival in patients with MGMT methylated glioblastoma (median OS 22.9 (95% CI 17.7–30.8) vs. 43.2 (32.5–54.4) months for obese and non-obese patients respectively, p = 0.001), but not in MGMT unmethylated glioblastoma (median OS 17.1 (15.8–18.9) vs 17.6 (14.7–20.8) months, p = 0.26). The prognostic impact of obesity in MGMT methylated glioblastoma was confirmed in a multivariable Cox regression (adjusted odds ratio: 2.57 (95% CI 1.53–4.31), p < 0.001) adjusted for age, sex, extent of resection, baseline steroids, Karnofsky performance score, and treatment arm.
Conclusion: Obesity was associated with shorter survival in MGMT methylated, but not in MGMT unmethylated glioblastoma patients.
Oral e-Poster Presentations - Booth 2: Neuro-Oncology C (Imaging&Monitoring), September 27, 2023, 1:00 PM - 2:30 PM
Background: Repetitive TMS (rTMS) can be used to non-invasively map cortical language areas. Commonly, frequencies of 5-10 Hz are used to induce speech errors. We could recently show that frequencies of 30 and 50 Hz are advantageous to achieve higher reliability. However, high-frequent rTMS applied over perisylvian regions still suffer from limited tolerability. Using short-train or paired-pulse TMS (pp-TMS) might offer a good alternative to rTMS to interfere with speech production. In this study, we, therefore, compared 30 Hz rTMS to pp-TMS aiming at improved language mapping.
Methods: 13 healthy, right-handed subjects (f=6, 25-41 years) were investigated using two different rTMS protocols: (i) 30 Hz rTMS and (ii) pp-TMS. TMS protocols were applied in a pseudo-randomized order during a picture naming task (picture-to-trigger interval: 0 ms) over cortical language areas. In a subsequent study, we compared pp-TMS also to short trains of three TMS pulses and repetitive paired pulse TMS. Language errors were post-hoc analysed by two independent raters and were assigned to eight different error categories. The level of pain was assessed on a subjective 0-10 numeric rating scale (NRS). Moreover, language error distribution was analysed using a cortical parcellation system.
Results: 30 Hz rTMS evoked a significantly higher number of errors than the pp-protocol, i.e., 18 ± 12 % vs. 10 ± 7 % (p<0.05). However, pp-TMS was significantly better tolerated with a mean NRS of 2.3 ± 1.6 vs. 3.4 ± 1.5 (p<0.05, FDR-corrected). Of note, pp-TMS could induce a higher number of anomias (15 ± 15 %) than repetitive TMS protocols (4 ± 7 %; p<0.1, FDR-corrected), but less dysarthria. The cortical distribution of errors differed between the two protocols. The results of train-of-three TMS were similar to the pp-TMS protocol.
Conclusions: Due to its better tolerability, pp-TMS might offer the possibility to stimulate regions which are particularly prone to direct facial / trigeminal nerve stimulation, e.g., the inferior frontal gyrus. Moreover, pp-TMS seems advantageous for mapping patients who are comparatively susceptible to rTMS side effects and with regard to safety in general.