Refine
Document Type
- Article (2)
- Conference Proceeding (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Strahldynamik (1)
- Teilchenbeschleuniger (1)
- beam dynamics (1)
- particle accelerators (1)
Institute
- Physik (5)
Es wurde eine neue Routine zur Berechnung der Raumladungskräfte basierend auf einer schnellen Fourier-Transformation entwickelt und in das Teilchensimulationsprogramm LORASR integriert. Dadurch werden einzelne oder bis zu mehreren 100 Simulationen im Batch-Modus mit je 1 Million Makroteilchen und akzeptablen Rechenzeiten ermöglicht. Die neue Raumladungsroutine wurde im Rahmen der Europäischen „High Intensity Pulsed Proton Injectors” (HIPPI) Kollaboration erfolgreich validiert. Dabei wurden verschiedene statische Vergleichstests der Poisson-Solver und schließlich Vergleichsrechnungen entlang des Alvarez-Beschleunigerabschnittes des GSI UNILAC durchgeführt. Darüber hinaus wurden Werkzeuge zum Aufprägen und zur Analyse von Maschinenfehlern entwickelt. Diese wurden erstmals für Fehlertoleranzstudien an der IH-Kavität des Heidelberger Therapiebeschleunigers, am Protonen-Linearbeschleuniger für das FAIR Projekt in Darmstadt sowie am Vorschlag eines supraleitenden CH-Beschleunigers für die “International Fusion Materials Irradiation Facility” (IFMIF) eingesetzt.
As the successor of the EUROTRANS project, the MAX project is aiming to continue the R&D effects for a European Accelerator-Driven System and to bring the conceptual design to reality. The layout of the driver linac for MAX will follow the reference design made for the XT-ADS phase of the EUROTRANS project. For the injector part, new design strategies and approaches, e.g. half resonant frequency, half transition-energy between the RFQ and the CH-DTL, and using the 4-rod RFQ structure instead of the originally proposed 4-vane RFQ, have been conceived and studied to reach a more reliable CW operation at reduced costs. In this paper, the design and simulation results of the MAX injector are presented.
The MYRRHA Project (Multi Purpose Hybrid Reactor for High Tech Applications) at Mol/belgium will be a user facility with emphasis on research with neutron generated by a spallation source. One main aspect is the demonstration of nuclear waste technology using an accelerator driven system. A superconducting linac delivers a 4 mA, 600 MeV proton beam. The first accelerating section is covered by the 17 MeV injector. It consists of a proton source, an RFQ, two room temperature CH cavities and 4 superconducting CH-cavities. The initial design has used an RF frequency of 352 MHz. Recently the frequency of the injector has been set to 176 MHz. The main reason is the possible use of a 4-rod-RFQ with reduced power dissipation and energy, respectively. The status of the overall injector layout including cavity design is presented.
EUROTRANS is a European research program for the transmutation of high level nuclear waste in an accelerator-driven system (ADS). As proposed, the driver linac needs to deliver a 2.5–4 mA, 600 MeV continuous-wave (CW) proton beam and later a 20 mA, 800 MeV one to the spallation target in the prototype-scale and industrial-scale demonstration phases, respectively. This paper is focusing on the conceptual studies performed with respect to the 17 MeV injector. First, the special beam dynamics strategies and methods, which have been developed and applied to design a current-variable injector up to 30 mA for allowing an easy upgrade without additional R&D costs, will be introduced. Then the error study made for evaluating the tolerance limits of the designed injector will be presented as well.
Motivated by the necessary replacement of the GSI UNILAC poststripper linac, a compact and efficient linac design based on IH-type cavities has been developed. Using KONUS beam dynamics, it was possible to design a linac consisting of only five cavities that can be operated by the existing UNILAC RF amplifier structure. The transversal focusing scheme is based on magnetic quadrupole triplet lenses. The optimized design provides full transmission and low emittance growth for the design current of 15 emA U28+, accelerating the beam from 1.4 MeV/u to 11.4 MeV/u. Extensive error studies were performed to define tolerances and verify the stability of the design with respect to misalignment and injection parameters. The design provides a compact and cost effective alternative to a new Alvarez linac. With a total length of just 22.8 meters it will leave room for future energy upgrades in the UNILAC tunnel.