Refine
Year of publication
- 2018 (3)
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Everolimus (2)
- Kidney transplantation (2)
- Antibody-mediated rejection (1)
- Biopsy (1)
- Diabetes (1)
- Kidney (1)
- PTDM (1)
- Post-transplant (1)
- Randomized (1)
- TOR inhibitor (1)
Institute
- Medizin (2)
- Georg-Speyer-Haus (1)
- Pharmazie (1)
Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury
(2018)
Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury (AKI). Non-coding RNAs are crucially involved in its pathophysiology. We identified hypoxia-induced long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) to be upregulated in renal I/R injury. We here elucidated the functional role of Malat1 in vitro and its potential contribution to kidney injury in vivo. Malat1 was upregulated in kidney biopsies and plasma of patients with AKI, in murine hypoxic kidney tissue as well as in cultured and ex vivo sorted hypoxic endothelial cells and tubular epithelial cells. Malat1 was transcriptionally activated by hypoxia-inducible factor 1-α. In vitro, Malat1 inhibition reduced proliferation and the number of endothelial cells in the S-phase of the cell cycle. In vivo, Malat1 knockout and wildtype mice showed similar degrees of outer medullary tubular epithelial injury, proliferation, capillary rarefaction, inflammation and fibrosis, survival and kidney function. Small-RNA sequencing and whole genome expression analysis revealed only minor changes between ischemic Malat1 knockout and wildtype mice. Contrary to previous studies, which suggested a prominent role of Malat1 in the induction of disease, we did not confirm an in vivo role of Malat1 concerning renal I/R-injury.
Background: Conversion from calcineurin inhibitor (CNI) therapy to a mammalian target of rapamycin (mTOR) inhibitor following kidney transplantation may help to preserve graft function. Data are sparse, however, concerning the impact of conversion on posttransplant diabetes mellitus (PTDM) or the progression of pre-existing diabetes.
Methods: PTDM and other diabetes-related parameters were assessed post hoc in two large open-label multicenter trials. Kidney transplant recipients were randomized (i) at month 4.5 to switch to everolimus or remain on a standard cyclosporine (CsA)-based regimen (ZEUS, n = 300), or (ii) at month 3 to switch to everolimus, remain on standard CNI therapy or convert to everolimus with reduced-exposure CsA (HERAKLES, n = 497).
Results: There were no significant differences in the incidence of PTDM between treatment groups (log rank p = 0.97 [ZEUS], p = 0.90 [HERAKLES]). The mean change in random blood glucose from randomization to month 12 was also similar between treatment groups in both trials for patients with or without PTDM, and with or without pre-existing diabetes. The change in eGFR from randomization to month 12 showed a benefit for everolimus versus comparator groups in all subpopulations, but only reached significance in larger subgroups (no PTDM or no pre-existing diabetes).
Conclusions: Within the restrictions of this post hoc analysis, including non-standardized diagnostic criteria and limited glycemia laboratory parameters, these data do not indicate any difference in the incidence or severity of PTDM with early conversion from a CsA-based regimen to everolimus, or in the progression of pre-existing diabetes.
Trial registration: clinicaltrials.gov, NCT00154310 (registered September 2005) and NCT00514514 (registered August 2007); EudraCT (2006-007021-32 and 2004-004346-40).
Background: Conversion from calcineurin inhibitor (CNI) therapy to everolimus within 6 months after kidney transplantation improves long-term graft function but can increase the risk of mild biopsy-proven acute cellular rejection (BPAR). We performed a post-hoc analysis of histological data from a randomized trial in order to further analyze histologic information obtained from indication and protocol biopsies up to 5 years after transplantation.
Methods: Biopsy samples obtained up to 5 years post-transplant were analyzed from the randomized ZEUS study, in which kidney transplant patients were randomized at month 4.5 to switch to everolimus (n = 154) or remain on cyclosporine (CsA)-based immunosuppression (n = 146). All patients received mycophenolate and steroids.
Results: At least one investigator-initiated biopsy was undertaken in 53 patients in each group between randomization and year 5, with a mean (SD) of 2.6 (1.7) and 2.2 (1.4) biopsies per patient in the everolimus and CsA groups, respectively. In the everolimus and CsA groups, investigator-initiated biopsies showed (i) BPAR in 12.3 and 7.5% (p = 0.182) of patients, respectively, with episodes graded mild in 22/24 and 18/20 cases (ii) CsA toxicity lesions in 4.5 and 10.3% of patients (p = 0.076) (iii) antibody-mediated rejection in 0.6 and 2.7% of patients (p = 0.204), respectively.
Conclusions: This analysis of histological findings in the ZEUS study to 5 years after kidney transplantation shows no increase in antibody-mediated rejection under everolimus-based therapy with a lower rate of CNI-related toxicity compared to a conventional CsA-based regimen, and confirms the preponderance of mild BPAR seen in the main study after the early switch to CsA-free everolimus therapy.
Trial registration: ClinicalTrials.gov NCT00154310. Date of registration: September 12, 2005.