Refine
Year of publication
Document Type
- Article (278)
- Preprint (128)
- Part of a Book (1)
Has Fulltext
- yes (407)
Is part of the Bibliography
- no (407)
Keywords
- BESIII (17)
- e +-e − Experiments (14)
- Branching fraction (10)
- Charm Physics (5)
- Hadronic decays (5)
- Particle and Resonance Production (5)
- Quarkonium (5)
- Branching fractions (4)
- Exotics (4)
- Lepton colliders (4)
Institute
- Physik (396)
- Medizin (5)
- Frankfurt Institute for Advanced Studies (FIAS) (2)
- Biochemie, Chemie und Pharmazie (1)
- Psychologie (1)
We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrt[sNN]=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5<pT<12 GeV/c. The collision energy dependence of the yields and the centrality and pT dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of pT-dependent suppression, which may be expected from models incorporating jet attenuation in cold nuclear matter or scattering of fragmentation hadrons.
This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, |GE | and |GM|, using the ¯pp → μ+μ− reaction at PANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at PANDA, using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is ¯pp → π+π−,due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distribuations of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented.
Based on a sample of 4.4 fb−1 of e+e− annihilation data collected in the energy region between 4.6 GeV and 4.7 GeV with the BESIII detector at BEPCII, two singly Cabibbo-suppressed decays Λ+c→Σ0K+ and Λ+c→Σ+K0S are studied. The ratio of the branching fraction B(Λ+c→Σ0K+) relative to B(Λ+c→Σ0π+) is measured to be 0.0361±0.0073(stat.)±0.0005(syst.), and the ratio of B(Λ+c→Σ+K0S) relative to B(Λ+c→Σ+π+π−) is measured to be 0.0106±0.0031(stat.)±0.0004(syst.). After taking the world-average branching fractions of the reference decay channels, the branching fractions B(Λ+c→Σ0K+) and B(Λ+c→Σ+K0S) are determined to be (4.7±0.9(stat.)±0.1(syst.)±0.3(ref.))×10−4 and (4.8±1.4(stat.)±0.2(syst.)±0.3(ref.))×10−4, respectively. The branching fraction of the Λ+c→Σ+K0S decay is measured for the first time.
The first amplitude analysis of the decay D+s→K−K+π+π0 is presented using the data samples, corresponding to an integrated luminosity of 6.32 fb−1, collected with the BESIII detector at e+e− center-of-mass energies between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency estimated by the results of the amplitude analysis, the branching fraction of D+s→K−K+π+π0 decay is measured to be (5.42±0.10stat.±0.17syst.)%.
We present the first amplitude analysis of the decay D+s→K−K+π+π0 using data samples of 6.32 fb−1 recorded with the BESIII detector between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency determined by the results of the amplitude analysis, we measure the branching fraction of D+s→K−K+π+π0 decay to be (5.42±0.10stat.±0.17syst.)%.
We report the first measurements of the absolute branching fractions of D0 → K0 Lϕ, D0 → K0Lη, D0 → K0Lω, and D0 → K0Lη0, by analyzing 2.93 fb−1 of eþe− collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector. Taking the world averages of the branching fractions of D0 → K0Sϕ, D0 → K0Sη, D0 → K0Sω, and D0 → K0Sη0, the K0S − K0L asymmetries RðD0; XÞ in these decay modes are obtained. The CP asymmetries in these decays are also determined. No significant CP violation is observed
We report a measurement of the cross section for the process e+e−→π+π−J/ψ around the X(3872) mass in search for the direct formation of e+e−→X(3872) through the two-photon fusion process. No enhancement of the cross section is observed at the X(3872) peak and an upper limit on the product of electronic width and branching fraction of X(3872)→π+π−J/ψ is determined to be Γee×B(X(3872)→π+π−J/ψ)<7.5×10−3eV at 90% confidence level under an assumption of total width of 1.19±0.21 MeV. This is an improvement of a factor of about 17 compared to the previous limit. Furthermore, using the latest result of B(X(3872)→π+π−J/ψ), an upper limit on the electronic width Γee of X(3872) is obtained to be <0.32eV at the 90% confidence level.
Using e+e− annihilation data sets collected with the BESIII detector, we measure the cross sections of the processes e+e−→e+e− and e+e−→μ+μ− at fifteen center-of-mass energy points in the vicinity of the J/ψ resonance. By a simultaneous fit to the measured, center-of-mass energy dependent cross sections of the two processes, the combined quantities ΓeeΓee/Γtot and ΓeeΓμμ/Γtot are determined to be (0.346±0.009) and (0.335±0.006) keV, respectively, where Γee, Γμμ, and Γtot are the electronic, muonic, and total decay widths of the J/ψ resonance, respectively. Using the resultant ΓeeΓμμ/Γtot and ΓeeΓee/Γtot, the ratio Γee/Γμμ is calculated to be 1.031±0.015, which is consistent with the expectation of lepton universality within about two standard deviations. Assuming lepton universality and using the branching fraction of the J/ψ leptonic decay measured by BESIII in 2013, Γtot and Γll are determined to be (93.0±2.1) and (5.56±0.11) keV, respectively, where Γll is the average leptonic decay width of the J/ψ resonance.
Using data samples with an integrated luminosity of 19 fb−1 at twenty-eight center-of-mass energies from 3.872 GeV to 4.700 GeV collected with the BESIII detector at the BEPCII electron-positron collider, the process e+e− → ηπ+π− and the intermediate process e+e− → ηρ0 are studied for the first time. The Born cross sections are measured. No significant resonance structure is observed in the cross section lineshape.
We report a measurement of the cross section for the process e+e−→π+π−J/ψ around the X(3872) mass in search for the direct formation of e+e−→X(3872) through the two-photon fusion process. No enhancement of the cross section is observed at the X(3872) peak and an upper limit on the product of electronic width and branching fraction of X(3872)→π+π−J/ψ is determined to be Γee×B(X(3872)→π+π−J/ψ)<7.5×10−3eV at 90% confidence level under an assumption of total width of 1.19±0.21 MeV. This is an improvement of a factor of about 17 compared to the previous limit. Furthermore, using the latest result of B(X(3872)→π+π−J/ψ), an upper limit on the electronic width Γee of X(3872) is obtained to be <0.32eV at the 90% confidence level.