Refine
Year of publication
- 2004 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Albaner See (1)
- Biomarker (1)
- Bodensee (1)
- Paläoklimatologie (1)
- Seesediment (1)
Institute
The biomarker record in two different lakes in central Europe, Lake Albano and Lake Constance, is used to reflect environmental changes and lake system response during the Late Glacial and Holocene. Extractable organic compounds in lake sediments, which can be assigned to their biological source (biomarkers) function as fingerprints of past aquatic or land plant organisms. Using gas chromatography coupled with mass spectrometry, 21 different biomarkers (predominantly steroids and triterpenoids) as well as a variety of n-alkanes, nalkanols, and n-alkanoic acids could be identified in the sediment records of Lake Albano and Lake Constance. In the Holocene sediments of Lake Albano, the distribution of biomarkers such as dinosterol (dinoflagellates), isoarborinol, and diplopterol (aquatic organisms) indicate three biomarker zones: The period between 0-3,800 years BP (zone 3) is characterized by high concentrations of these biomarkers and others such as tetrahymanol and diploptene. Conversely, zone 2 (3,800-6,500 years BP) shows very low concentrations of all autochthonous biomarkers. In zone 1 (6,500–11,480 years BP), dinosterol, isoarborinol, and diplopterol range on a relatively high level, whereas diploptene and tetrahymanol display comparatively low concentrations. The results suggest at least two distinct changes in the predominance of primary producers during the Holocene, which are related to changes in the lake system such as lake mixing and water column stratification. This interpretation is consistent with previous investigations of Lake Albano sediments including pigment and hydrogen index data (Ariztegui et al., 1996b; Guilizzoni et al., 2002). Allochthonous biomarkers such as long-chain n-alkanes, amyrenones and friedelin indicate a development from forest to a more open landscape from 6,000 and 5.000 years BP, respectively. After a period of high concentrations during the first half of the Holocene, all biomarkers derived from deciduous trees exhibit relatively low values until around 1,000 years BP. Again, this is consistent with results from previous pollen investigations (Ariztegui et al., 2000). The sediment core from Upper Lake Constance comprises the Late Glacial and Holocene. It was analysed for biomarkers and inorganic tracers in order to compare the biomarker results with other proxy data from the same core. Magnetic susceptibility (MS) was measured to get a high-resolution stratigraphic framework of the core and to obtain further information about changes of the proportions of allochthonous and autochthonous input. Enhanced concentrations and accumulation rates of dinosterol (biomarker for dinoflagellates) and biogenic calcite give evidence of increasing lake productivity at the beginning of the Holocene followed by a decrease in bioproductivity after around 7,000 years BP. Younger Dryas sediments are characterized by low amounts of both dinosterol and biogenic calcite indicating a low productivity. The comparison of the concentrations and accumulation rates of b-sitosterol and stigmastanol with parameters reflecting lake productivity suggests that both steroids in Lake Constance sediments are mainly derived from terrigenous sources. Biomarkers as well as concentrations and accumulation rates of allochthonous inorganic compounds such as titanium, magnesium and strontium indicate a slightly enhanced allochthonous input after 8,500 years BP. Significant increase of erosive matter input from enhanced soil erosion is not observed before 4,000 years BP. This can be attributed to the combined effects of precipitation increase as a result of climatic deterioration and anthropogenic deforestation which is consistent with observations from other lakes in Central Europe. The MS record of Lake Constance confirms these results by tracing the climatically induced shifts of more intense bioproduction (low MS caused by increased calcite deposition) during the ‘climatic optimum’. This is followed by increasing input of terrigenous sediment compounds during colder and wetter periods which lead to higher MS values in the lake sediments. The occurrence of tetrahymanol in Lake Constance sediments questions the unambiguous use of tetrahymanol as an indicator for water column stratification. Anaerobic organic macroaggregates within the oxygenated, photic zone of the water column have to be considered as a possible living space for anaerobic microorganisms containing tetrahymanol. The direct comparison of two very different lakes Albano and Constance with respect to biomarkers indicating climate or environmental change provides a contribution to the recent biomarker research for a better understanding of biomarkers in lacustrine sediments.