Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Arzneimittel (1)
- COVID-19 (1)
- NMR spectroscopy (1)
- Nachweis (1)
- SARS-CoV-2 (1)
- Spurenelement (1)
- Totalreflexionsröntgenfluoreszenzanalyse (1)
- accessory proteins (1)
- cell-free protein synthesis (1)
- intrinsically disordered region (1)
Institute
Arzneistoffe sind mit einer Vielzahl an anorganischen Elementen im Spurenbereich kontaminiert. Die Elementspuren finden durch Korrosion der Werkstoffoberflächen, durch Emaillierfehler sowie durch die eingesetzten Chemikalien Eintrag in das Produkt und können durch TXRF- Messungen quantifiziert werden. Über eine Bestimmung der anorganischen Elemente durch TXRF (fingerprint- Analyse) können anhand einer Mustererkennung Arzneistoffchargen unterschieden oder gar entsprechenden Validierungen zugeordnet werden. Die experimentellen Untersuchungen zeigen, daß eine Erfassung von anorganischen Elementspuren in Arzneistoffen durch TXRF nur nach einem Abbau der organischen Matrixanteile in niedermolekulare und leicht flüchtige Verbindungen erfolgen kann. Eine Quantifizierung der anorganischen Spurenbestandteile durch ein direktes Vermessen der Proben ist nicht möglich. Die organischen Matrixanteile führen auf dem Probenträger zu starken Trocknungsrückständen und hohen Comptonstreuquerschnitten. Die durch den Comptoneffekt verursachte Streustrahlung begrenzt die Erfassung von anorganischen Elementen auf Nebenbestandteile. Eine Erfassung von anorganischen Elementen im Nanogramm- Bereich kann nicht erfolgen. Nebengruppenelemente und Elemente mit hohen Ordnungszahlen zeigen dabei gegenüber leichten Elementen aufgrund ihrer größeren Fluoreszenzintensität und energiereichen sekundären Röntgenstrahlung eine höhere Nachweisempfindlichkeit. Aufgrund der hohen Reichweite von harten Röntgenstrahlen in Materie konnte zudem ein Einfluß organischer Matrixanteile auf die Wiederfindungsrate von schweren Elementen nicht beobachtet werden. Leichte Elemente können dagegen aufgrund ihrer weichen sekundären Emissionsstrahlung und die damit verbundenen Absorptionseffekte in organischen Matrices nur unbefriedigend quantifiziert werden. Das Abtrennen der organischen Matrixanteile kann durch einen Naßaufschluß mit Salpetersäure in einem geschlossenen System unter konventioneller und mikrowellenunterstützter Wärmezufuhr sowie durch ein Sauerstoffplasma erfolgen. Die Effizienz eines Naßaufschlusses mit Salpetersäure in einem geschlossenen Gefäß ist dabei abhängig von dem Kohlenstoff- Grundgerüst der Verbindungen. Aliphatische Kohlenwassertsoffe sowie alicyclische und aromatische Heterocyclen werden nahezu vollständig mineralisiert. Aromatische Verbindungen zeigen dagegen einen geringen Kohlenstoff umsatz. Es entstehen aromatische Nitrosoverbindungen, die unter den gegeben Bedingungen nicht weiter abgebaut werden können. Eine Erhöhung des Mineralisierungsgrades konnte auch durch die Bildung von angeregtem Sauerstoff durch Zusatz von geringen Mengen an Wasserstoffperoxid nicht beobachtet werden. Die Ergebnisse zeigen zudem, daß eine Quantifizierung von leicht flüchtigen Elementen in Gegenwart von Stickoxiden aufgrund von Elementverflüchtigungen nicht erfolgen kann. Sauerstoffplasmen führen unabhängig vom Kohlenstoff- Grundgerüst zu einer vollständigen Mineralisierung der organischen Matrixanteile. Infolge des hohen Oxidationspotentials von angeregtem Sauerstoff ist bei dieser Aufschlußtechnik eine quantitative Erfassung von leicht flüchtigen Elementen und Verbindungen nicht möglich.
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.
The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5′ end, the ribosomal frameshift segment and the 3′-untranslated region (3′-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.