Refine
Document Type
- Article (13)
- Doctoral Thesis (1)
Language
- English (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- Cirrhosis (3)
- Liver diseases (3)
- Inflammation (2)
- acute-on-chronic liver failure (2)
- Ascites (1)
- Bacterial abundance (1)
- Blood plasma (1)
- Data acquisition (1)
- Data processing (1)
- Data visualization (1)
Platelets participate in the development of liver fibrosis in animal models, but little is known about the benefit of antiplatelet agents in preventing liver fibrosis in humans. We therefore explored the relationship between the use of antiplatelet agents and liver fibrosis in a prospective cohort study of patients at high risk of liver fibrosis and cardiovascular events. Consecutive patients undergoing elective coronary angiography at the University Hospital Frankfurt were prospectively included in the present study. Associations between use of antiplatelet agents (acetyl salicylic acid, P2Y12 receptor antagonists) and liver fibrosis were assessed in regression models, and the relationship between platelet‐derived growth factor beta (PDGF‐β) serum concentration, platelets, liver fibrosis, and use of antiplatelet agents was characterized. Out of 505 included patients, 337 (67%) received antiplatelet agents and 134 (27%) had liver fibrosis defined as a FibroScan transient elastography (TE) value ≥7.9 kPa. Use of antiplatelet agents was inversely associated with the presence of liver fibrosis in univariate and multivariate analyses (multivariate odds ratio [OR], 0.67; 95% confidence interval [CI], 0.51‐0.89; P = 0.006). Use of antiplatelet agents was also inversely associated with FibroTest values (beta, –0.38; SD beta, 0.15; P = 0.02). Furthermore, there was a significant correlation between platelet counts and PDGF‐β serum concentration (rho, 0.33; P < 0.0001), but PDGF‐β serum levels were not affected by antiplatelet agents. Conclusion: There is a protective association between the use of antiplatelet agents and occurrence of liver fibrosis. A randomized controlled trial is needed to explore causality and the potential of antiplatelet agents as antifibrotic therapy in patients at risk for liver fibrosis progression.
Single nucleotide polymorphism (SNP) rs738409 C>G in the patatin‐like phospholipase domain containing 3 (PNPLA3) gene results in an amino acid exchange from isoleucin to methionine at position I148M of PNPLA3. The expression of this loss‐of‐function mutation leads to impaired hepatocellular triglyceride hydrolysis and is associated with the development of liver steatosis, fibrosis, and hepatocellular carcinoma. In contrast to these well‐established associations, the relationship of the PNPLA3 rs738409 variant with other metabolic traits is incompletely understood. We therefore assessed the association of the PNPLA3 rs738409 genotype with relevant metabolic traits in a prospective study of patients at high risk for cardiovascular events, i.e., patients undergoing coronary angiography. In a total of 270 patients, known associations of the PNPLA3 rs738409 GG genotype with nonalcoholic steatohepatitis and liver fibrosis were confirmed. In addition, we found an association of the PNPLA3 rs738409 G allele with the presence of diabetes (22% versus 28% versus 58% for CC versus CG versus GG genotype, respectively; P = 0.02). In contrast to its association with nonalcoholic fatty liver disease, liver fibrosis, and diabetes, the minor G allele of PNPLA3 rs738409 was inversely associated with total serum cholesterol and low‐density lipoprotein serum levels (P = 0.003 and P = 0.02, respectively). Finally, there was a trend toward an inverse association between the presence of the PNPLA3 rs738409 G allele and significant coronary heart disease. Comparable trends were observed for the transmembrane 6 superfamily member 2 (TM6SF2) 167 K variant, but the sample size was too small to evaluate this rarer variant. Conclusion: The PNPLA3 rs738409 G allele is associated with liver disease but also with a relatively benign cardiovascular risk profile.
Alcoholism is one of the leading and increasingly prevalent reasons of liver associated morbidity and mortality worldwide. Alcoholic hepatitis (AH) constitutes a severe disease with currently no satisfying treatment options. Lipoxin A4 (LXA4), a 15-lipoxygenase (ALOX15)-dependent lipid mediator involved in resolution of inflammation, showed promising pre-clinical results in the therapy of several inflammatory diseases. Since inflammation is a main driver of disease progression in alcoholic hepatitis, we investigated the impact of endogenous ALOX15-dependent lipid mediators and exogenously applied LXA4 on AH development. A mouse model for alcoholic steatohepatitis (NIAAA model) was tested in Alox12/15+/+ and Alox12/15−/− mice, with or without supplementation of LXA4. Absence of Alox12/15 aggravated parameters of liver disease, increased hepatic immune cell infiltration in AH, and elevated systemic neutrophils as a marker for systemic inflammation. Interestingly, i.p. injections of LXA4 significantly lowered transaminase levels only in Alox12/15−/− mice and reduced hepatic immune cell infiltration as well as systemic inflammatory cytokine expression in both genotypes, even though steatosis progressed. Thus, while LXA4 injection attenuated selected parameters of disease progression in Alox12/15−/− mice, its beneficial impact on immunity was also apparent in Alox12/15+/+ mice. In conclusion, pro-resolving lipid mediators may be beneficial to reduce inflammation in alcoholic hepatitis.
The liver as the biggest endocrine gland of the human body plays a central role in many metabolic pathways such as detoxification, storage of carbohydrates and distribution of lipids. As the liver receives blood supply from the gut by the portal vein, liver cells are often challenged with high concentrations of nutrients and components of our commensal microbiota. Therefore, the immune system of the liver induces a tolerant state, meaning no or low inflammatory reactions to those constant stimuli. Yet, as various pathogens target the liver, the hepatic immune system also needs the capability to induce strong immune responses quickly. Chronical damage to the liver, which can be caused by alcohol, pathogens or toxins, might lead to liver cirrhosis, where the amount of functional liver tissue is decreased dramatically. This pathology can worsen and lead to acute-on-chronic liver failure, whose high mortality is due to high inflammation and multi-organ failure. Interleukin-7 is a cytokine known for its pro-survival functions especially in lymphopoiesis. However, it is also very important for maintenance of mature immune cells in the liver. As mouse experiments have demonstrated an induction of Interleukin-7 in the liver as a response to bacterial lipopolysaccharide, we aimed to characterize the role of Interleukin-7 in hepatic immunoregulation in both health and disease.
The experiments were mostly based on in vitro approaches. Induction of Interleukin-7 in liver cells was analyzed using ELISA, quantitative PCR, and Immunoblotting. Knockdown of signal transduction components was performed by siRNA transfection. Primary immune cells isolated from healthy donor buffy coat were studied for their ability to respond to Interleukin-7. Activation of downstream signal transduction was assessed by Immunoblotting. Functional consequences of Interleukin-7 signaling, such as alterations in cellular metabolism, cellular survival and endotoxin tolerance, were studied in monocyte-derived macrophages. Finally, serum concentrations of Interleukin-7 and frequencies of Interleukin-7 receptor positive immune cells were quantified in patients with compensated or decompensated liver cirrhosis or acute-on-chronic liver failure.
Interleukin-7 expression could be observed in human hepatic cell lines and primary hepatic sinusoidal endothelial cells when stimulated with IFNα or IFNγ, but not IFNλ. IRF-1 was identified as a key regulator of Interleukin-7 expression, as its transcription, translation and nuclear translocation were induced and enhanced upon IFNα or IFNγ, but not IFNλ treatment. We identified LPS-primed macrophages as innate immune target cells of Interleukin-7, which responded by an inhibitory phosphorylation of GSK3. This signal transduction led to enhanced production of pro-inflammatory cytokines and abolished endotoxin tolerance. In parallel, cellular fitness was reduced as demonstrated by reduced intracellular ATP concentration and intracellular WST-1 staining. Finally, we could identify components of the in vitro signal transduction also in liver cirrhosis patients. However, Interleukin-7 serum concentrations were significantly in liver cirrhosis patients compared to healthy controls. In addition, the frequencies of Interleukin-7 receptor positive immune cell populations differed in patients and controls.
We identify Interleukin-7 as a pro-inflammatory cytokine in hepatic immunoregulation. It is part of a cascade where its induction is regulated by type I and type II Interferons and mainly restricted by the presence of IRF1. We demonstrate the importance of Interleukin-7 also for innate immune cells, where the abolishment of endotoxin tolerance may provide an interesting strategy of liver cirrhosis patients. In addition, reduced viability of macrophages in response to Interleukin-7 is a striking contrast to the well-described survival functions in lymphocytes. The decrease of serum Interleukin-7 levels and alterations of Interleukin-7 receptor positive immune cell populations suggest an important role for Interleukin-7 also in the diseased liver. Due to the identified mechanisms of action, Interleukin-7 may be an interesting candidate for immunotherapeutic approaches of liver cirrhosis and acute-on-chronic liver failure.
Hepatitis C virus (HCV) infection is associated with alterations in host lipid and insulin signaling cascades, which are partially explained by a dependence of the HCV life cycle on key molecules in these metabolic pathways. Yet, little is known on the role in the HCV life cycle of glycogen synthase kinase 3 (GSK3), one of the most important kinases in cellular metabolism. Therefore, the impact of GSK3 on the HCV life cycle was assessed in human hepatoma cell lines harboring subgenomic genotype 1b and 2a replicons or producing cell culture-derived HCV genotype 2a by exposure to synthetic GSK3 inhibitors, GSK3 gene silencing, overexpression of GSK3 constructs and immunofluorescence analyses. In addition, the role of GSK3 in hepatitis E virus (HEV) replication was investigated to assess virus specificity of the observed findings. We found that both inhibition of GSK3 function by synthetic inhibitors as well as silencing of GSK3β gene expression resulted in a decrease of HCV replication and infectious particle production, whereas silencing of the GSK3α isoform had no relevant effect on the HCV life cycle. Conversely, overexpression of GSK3β resulted in enhanced HCV replication. In contrast, GSK3β had no effect on replication of subgenomic HEV replicon. The pro-viral effect of GSK3β on HCV replication was mediated by supporting expression of microRNA-122 (miR-122), a micro-RNA which is mandatory for wild-type HCV replication, as GSK3 inhibitors suppressed miR-122 levels and as inhibitors of GSK3 had no antiviral effect on a miR-122-independent HCV mutant. In conclusion, we have identified GSK3β is a novel host factor supporting HCV replication by maintaining high levels of hepatic miR-122 expression.
Sphingosine‐1‐phosphate (S1P) regulates pathophysiological processes, including liver regeneration, vascular tone control, and immune response. In patients with liver cirrhosis, acute deterioration of liver function is associated with high mortality rates. The present study investigated whether serum S1P concentrations are associated with disease severity in patients with chronic liver disease from compensated cirrhosis (CC), acute decompensation (AD), or acute‐on‐chronic liver failure (ACLF). From August 2013 to October 2017, patients who were admitted to the University Hospital Frankfurt with CC, AD, or ACLF were enrolled in our cirrhosis cohort study. Tandem mass spectrometry was performed on serum samples of 127 patients to assess S1P concentration. Our study comprised 19 patients with CC, 55 with AD, and 51 with ACLF, aged 29 to 76 years. We observed a significant decrease of S1P according to advanced liver injury from CC and AD up to ACLF (P < 0.001). S1P levels further decreased with progression to ACLF grade 3 (P < 0.05), and S1P highly inversely correlated with the Model for End‐Stage Liver Disease score (r = −0.508; P < 0.001). In multivariate analysis, S1P remained an independent predictor of 7‐day mortality with high diagnostic accuracy (area under the curve, 0.874; P < 0.001). Conclusion: In patients with chronic liver disease, serum S1P levels dramatically decreased with advanced stages of liver disease and were predictive of early mortality. Because S1P is a potent regulator of endothelial integrity and immune response, low S1P levels may significantly influence progressive multiorgan failure. Our data justify further elucidation of the diagnostic and therapeutic role of S1P in ACLF.
Introduction: Quinolone prophylaxis is recommended for patients with advanced cirrhosis at high risk of spontaneous bacterial peritonitis (SBP) or with prior SBP. Yet, the impact of long-term antibiotic prophylaxis on the microbiome of these patients is poorly characterized.
Methods: Patients with liver cirrhosis receiving long-term quinolone prophylaxis to prevent SBP were prospectively included and sputum and stool samples were obtained at baseline, 1, 4 and 12 weeks thereafter. Both bacterial DNA and RNA were assessed with 16S rRNA sequencing. Relative abundance, alpha and beta diversity were calculated and correlated with clinical outcome.
Results: Overall, 35 stool and 19 sputum samples were obtained from 11 patients. Two patients died (day 9 and 12) all others were followed for 180 days. Reduction of Shannon diversity and bacterial richness was insignificant after initiation of quinolone prophylaxis (p > 0.05). Gut microbiota were significantly different between patients (p < 0.001) but non-significantly altered between the different time points before and after initiation of antibiotic prophylaxis (p > 0.05). A high relative abundance of Enterobacteriaceae > 20% during quinolone prophylaxis was found in three patients. Specific clinical scenarios (development of secondary infections during antibiotic prophylaxis or the detection of multidrug-resistant Enterobacteriaceae) characterized these patients. Sputum microbiota were not significantly altered in individuals during prophylaxis.
Conclusion: The present exploratory study with small sample size showed that inter-individual differences in diversity of gut microbiota were high at baseline, yet quinolone prophylaxis had only a moderate impact. High relative abundances of Enterobacteriaceae during follow-up might indicate failure of or non-adherence to quinolone prophylaxis. However, our results may not be clinically significant given the limitations of the study and therefore future studies are needed to further investigate this phenomenon.
Background: Vitamin D is required to maintain the integrity of the intestinal barrier and inhibits inflammatory signaling pathways.
Objective: Vitamin D deficiency might be involved in cirrhosis-associated systemic inflammation and risk of hepatic decompensation in patients with liver cirrhosis.
Methods: Outpatients of the Hepatology Unit of the University Hospital Frankfurt with advanced liver fibrosis and cirrhosis were prospectively enrolled. 25-hydroxyvitamin D (25(OH)D3) serum concentrations were quantified and associated with markers of systemic inflammation / intestinal bacterial translocation and hepatic decompensation.
Results: A total of 338 patients with advanced liver fibrosis or cirrhosis were included. Of those, 51 patients (15%) were hospitalized due to hepatic decompensation during follow-up. Overall, 72 patients (21%) had severe vitamin D deficiency. However, patients receiving vitamin D supplements had significantly higher 25(OH)D3 serum levels compared to patients without supplements (37 ng/mL vs. 16 ng/ml, P<0.0001). Uni- and multivariate analyses revealed an independent association of severe vitamin D deficiency with the risk of hepatic decompensation during follow-up (multivariate P = 0.012; OR = 3.25, 95% CI = 1.30–8.2), together with MELD score, low hemoglobin concentration, low coffee consumption, and presence of diabetes. Of note, serum levels of C-reactive protein, IL-6 and soluble CD14 were significantly higher in patients with versus without severe vitamin D deficiency, and serum levels of soluble CD14 levels declined in patients with de novo supplementation of vitamin D (median 2.15 vs. 1.87 ng/mL, P = 0.002).
Conclusions: In this prospective cohort study, baseline vitamin D levels were inversely associated with liver-cirrhosis related systemic inflammation and the risk of hepatic decompensation.
Interleukin-7 (IL-7) is an important cytokine with pivotal pro-survival functions in the adaptive immune system. However, the role of IL-7 in innate immunity is not fully understood. In the present study, the impact of hepatic IL-7 on innate immune cells was assessed by functional experiments as well as in patients with different stages of liver cirrhosis or acute-on-chronic liver failure (ACLF). Human hepatocytes and liver sinusoidal endothelial cells secreted IL-7 in response to stimulation with interferons (IFNs) of type I and II, yet not type III. De novo translation of interferon-response factor-1 (IRF-1) restricted IL-7 production to stimulation with type I and II IFNs. LPS-primed human macrophages were identified as innate immune target cells responding to IL-7 signaling by inactivation of Glycogen synthase kinase-3 (GSK3). IL-7-mediated GSK3 inactivation augmented LPS-induced secretion of pro-inflammatory cytokines and blunted LPS tolerance of macrophages. The IFN-IRF-1-IL-7 axis was present in liver cirrhosis patients. However, liver cirrhosis patients with or without ACLF had significantly lower concentrations of IL-7 in serum compared to healthy controls, which might contribute to LPS-tolerance in these patients. In conclusion, we propose the presence of an inflammatory cascade where IFNs of type I/II induce hepatocellular IL-7 in an IRF-1-restriced way. Beyond its role in adaptive immune responses, IL-7 appears to augment the response of macrophages to LPS and to ameliorate LPS tolerance, which may improve innate immune responses against invading pathogens.
Background: While systemic inflammation is recognized as playing a central role in the pathogenesis of organ failures in patients with liver cirrhosis, less is known about its relevance in the development of classical hepatic decompensation. Aim: To characterize the relationship between systemic inflammation, hemodynamics, and anemia with decompensation of liver cirrhosis. Methods: This is a post-hoc analysis of a cohort study of outpatients with advanced liver fibrosis or cirrhosis. Results: Analysis included 338 patients of whom 51 patients (15%) were hospitalized due to decompensation of liver cirrhosis during a median follow-up time of six months. In univariate analysis, active alcoholism (p = 0.002), model of end-stage liver disease (MELD) score (p = 0.00002), serum IL-6 concentration (p = 0.006), heart rate (p = 0.03), low arterial blood pressure (p < 0.05), maximal portal venous flow (p = 0.008), and low hemoglobin concentration (p < 0.00001) were associated with hospitalization during follow-up. Multivariate analysis revealed an independent association of low hemoglobin (OR = 0.62, 95% CI = 0.51–0.78, p = 0.001) and serum IL-6 concentration (OR = 1.02, 95% CI = 1.01–1.04, p = 0.03)—but not of hemodynamic parameters—with hepatic decompensation. An inverse correlation between hemoglobin concentration and portal venous flow (R = −0.362, p < 0.0001) was detected for the non-hospitalized patients. Accuracy of baseline hemoglobin levels for predicting hospitalization (AUC = 0.84, p < 0.000001) was high. Conclusion: Anemia and systemic inflammation, rather than arterial circulatory dysfunction, are strong and independent predictors of hepatic decompensation in outpatients with liver cirrhosis.