Refine
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
Institute
- Physik (4)
In this study, we analyze the recently proposed charge transfer fluctuations within a finite pseudo-rapidity space. As the charge transfer fluctuation is a measure of the local charge correlation length, it is capable of detecting inhomogeneity in the hot and dense matter created by heavy ion collisions. We predict that going from peripheral to central collisions, the charge transfer fluctuations at midrapidity should decrease substantially while the charge transfer fluctuations at the edges of the observation window should decrease by a small amount. These are consequences of having a strongly inhomogeneous matter where the QGP component is concentrated around midrapidity. We also show how to constrain the values of the charge correlations lengths in both the hadronic phase and the QGP phase using the charge transfer fluctuations.
We show that an unambiguous way of determining the universal limiting fragmentation region is to consider the derivative (d 2 n / d eta 2) of the pseudo-rapidity distribution per participant pair. In addition, we find that the transition region between the fragmentation and the central plateau regions exhibits a second kind of universal behavior that is only apparent in d 2 n / d eta 2. The sqrt s dependence of the height of the central plateau (d n / d eta) eta=0 and the total charged particle multiplicity n total critically depend on the behavior of this universal transition curve. Analyzing available RHIC data, we show that (dn/d eta) eta=0 can be bounded by ln 2 s and n total can be bounded by ln 3 s. We also show that the deuteron-gold data from RHIC has the exactly same features as the gold-gold data indicating that these universal behaviors are a feature of the initial state parton-nucleus interactions and not a consequence of final state interactions. Predictions for LHC energy are also given.
Using combined data from the Relativistic Heavy Ion and Large Hadron Colliders, we constrain the shear and bulk viscosities of quark-gluon plasma (QGP) at temperatures of ∼150–350 MeV. We use Bayesian inference to translate experimental and theoretical uncertainties into probabilistic constraints for the viscosities. With Bayesian model averaging we propagate an estimate of the model uncertainty generated by the transition from hydrodynamics to hadron transport in the plasma’s final evolution stage, providing the most reliable phenomenological constraints to date on the QGP viscosities.
Starting from IP-Glasma initial conditions, we investigate the effects of bulk pressure on low mass dilepton production at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) energies. Though thermal dilepton is affected by the presence of both bulk and shear viscosity, whether or not these effects can be measured depends on the dilepton “cocktail” contribution to the the low mass dilepton . Combining the thermal and “cocktail” dileptons, the effects of bulk viscosity on total dilepton is investigated.