Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Gene expression (1)
- Genexpression (1)
- Hitzeschock-Proteine (1)
- Hitzestress (1)
- Pflanzenstress (1)
- Plant stress (1)
- Transcription (1)
- Transkription (1)
Institute
Compared to all other organisms with 1 to 3 heat stress transcription factors (Hsfs) or Hsf-related factors, plants have extraordinarily large Hsf families with more than 20 Hsfs. Plant Hsfs are classified into three classes according to their oligomerization domains which is built of hydrophobic heptad repeats (HR) in two parts, HR-A and HR-B. Both parts may be immediately adjacent (class B), or they are separated by insertion of 21 (class A) and 7 amino acid residues (class C). In plant Hsf family, detailed investigations are so far limited to Hsfs A1a, A2, A3, A4d, A9, and B1. They strongly indicate functional diversification to be the main reason for the coexistence of multiple Hsfs. As an example the functional triad of HsfA1a, HsfA2, and HsfB1 is essential for all three phases of the hs response, (i) the triggering of the response by HsfA1a as master regulator, (ii) the maintenance and high efficiency of hs gene transcription by cooperation of HsfA1a with Hsfs A2 and B1, and finally, (iii) the restoration of house-keeping gene transcription during the recovery phase mediated by HsfB1 in cooperation with house-keeping transcription factors. The results presented in this thesis for Hsfs A4 and A5 open completely different aspects of functional diversification and cooperation of Hsfs. HsfA4 and HsfA5 homooligomerize and bind to corresponding HSE motifs. But in contrast to the highly active HsfA4, HsfA5 is completely inactive as transcriptional activator. Yeast two hybrid and GST pull-down techniques showed that both Hsfs have strong tendency for heterooligomerization. Using fluorescence microscopy the HsfA4/A5 heterooligomers were found to localize in the nucleus. These complexes are transcriptionally inactive due to the impairment of DNA binding. The repressor function of HsfA5 requires only its OD and no additional factors, e.g. a putative co-repressor recruited by the C-terminal domain, are involved. Evidently, the repressor effect mainly results from the interference with the oligomeric state of HsfA4b, which is essential for efficient DNA binding and activator functions. EST database search revealed that plants have a single HsfA5 and usually two A4-type Hsfs. Using bioinformatics tools, Hsfs A4 and A5 were found to be phylogenetically closely related and clearly distinct from the other members of the Hsf family. On the basis of RT-PCR and Microarray data the representatives of the A4/A5 group are well expressed in different plant tissues albeit at very different levels which change with the developmental stages and stress conditions In rice and Arabidopsis, HsfA4 functions as an anti-apoptotic factor for stress induced oxidative damages. Based on my results, I hypothesize that HsfA5 functions as a novel type of selective repressor, regulating the function of A4-type Hsfs in plants. Considering the high sequence conservation with in plant Hsf family, it is tempting to speculate that this role of Hsf4/A5 pair is a fundamental feature of the Hsf system in plants.
Unlike other eukaryotes, plants possess a complex family of heat stress transcription factors (Hsfs) with usually more than 20 members. Among them, Hsfs A4 and A5 form a group distinguished from other Hsfs by structural features of their oligomerization domains and by a number of conserved signature sequences. We show that A4 Hsfs are potent activators of heat stress gene expression, whereas A5 Hsfs act as specific repressors of HsfA4 activity. The oligomerization domain of HsfA5 alone is necessary and sufficient to exert this effect. Due to the high specificity of the oligomerization domains, other class A Hsfs are not affected. Pull-down assay and yeast two-hybrid interaction tests demonstrate that the tendency to form HsfA4/A5 heterooligomers is stronger than the formation of homooligomers. The specificity of interaction between Hsfs A4 and A5 was confirmed by bimolecular fluorescence complementation experiments. The major role of the representatives of the HsfA4/A5 group, which are not involved in the conventional heat stress response, may reside in cell type-specific functions connected with the control of cell death triggered by pathogen infection and/or reactive oxygen species.
In plants, a family of more than 20 heat stress transcription factors (Hsf) controls the expression of heat stress (hs) genes. There is increasing evidence for the functional diversification between individual members of the Hsf family fulfilling distinct roles in response to various environmental stress conditions and developmental signals. In response to hs, accumulation of both heat stress proteins (Hsp) and Hsfs is induced. In tomato, the physical interaction between the constitutively expressed HsfA1 and the hs-inducible HsfA2 results in synergistic transcriptional activation (superactivation) of hs gene expression. Here, we show that the interaction is strikingly specific and not observed with other class A Hsfs. Hetero-oligomerization of the two-component Hsfs is preferred to homo-oligomerization, and each Hsf in the HsfA1/HsfA2 hetero-oligomeric complex has its characteristic contribution to its function as superactivator. Distinct regions of the oligomerization domain are responsible for specific homo- and hetero-oligomeric interactions leading to the formation of hexameric complexes. The results are summarized in a model of assembly and function of HsfA1/A2 superactivator complexes in hs gene regulation.