### Refine

#### Document Type

- Book (2)
- diplomthesis (1)

#### Has Fulltext

- yes (3)

#### Is part of the Bibliography

- no (3)

#### Institute

- Mathematik (3)

Epstein and Penner constructed in [EP88] the Euclidean decomposition of a non-compact hyperbolic n-manifold of finite volume for a choice of cusps, n >= 2. The manifold is cut along geodesic hyperplanes into hyperbolic ideal convex polyhedra. The intersection of the cusps with the Euclidean decomposition determined by them turns out to be rather simple as stated in Theorem 2.2. A dual decomposition resulting from the expansion of the cusps was already mentioned in [EP88]. These two dual hyperbolic decompositions of the manifold induce two dual decompositions in the Euclidean structure of the cusp sections. This observation leads in Theorems 5.1 and 5.2 to easily computable, necessary conditions for an arbitrary ideal polyhedral decomposition of the manifold to be a Euclidean decomposition.

Euklidische Zerlegungen nicht-kompakter hyperbolischer Mannigfaltigkeiten mit endlichem Volumen
(1998)

This thesis exhibits skeins based on the Homfly polynomial and their relations to Schur functions. The closures of skein-theoretic idempotents of the Hecke algebra are shown to be specializations of Schur functions. This result is applied to the calculation of the Homfly polynomial of the decorated Hopf link. A closed formula for these Homfly polynomials is given. Furthermore, the specialization of the variables to roots of unity is considered. The techniques are skein theory on the one side, and the theory of symmetric functions in the formulation of Schur functions on the other side. Many previously known results have been proved here by only using skein theory and without using knowledge about quantum groups.