Refine
Year of publication
- 2007 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
Leukemia inhibitory factor enhances neurogenin's pro-neural effect during mouse cortical development
(2007)
Die Entwicklung von unterschiedlichen Zelltypen waehrend der embryonalen ZNS-Entwicklung ist abhaengig von zellintrinsischen und positionsabhaengigen, aeusseren Einfluessen. Dabei bilden sich die verschiedenen Zellen in nacheinander ablaufenden bzw. sich teilweise ueberlappenden Zeitraeumen. Zuerst entstehen Radiaglia und Neuronen, nachfolgend Astrozyten und zuletzt Oligodendrozyten. Werden neurale Stammzellen/Vorlaeuferzellen (NPCs – neural precursor cells) zu unterschiedlichen Zeitpunkten entnommen und ohne den Einfluss von Wachstumsfaktoren kultiviert, so entwickeln sich diese Zellarten in der gleichen Reihenfolge. Die Neurogenese, die bei Mausembryos am Tag E11-12, nach dem Etablieren der Radialglia, beginnt, findet an E14 ihren Hoehepunkt. Zu diesem Zeitpunt werden die Gene Neurogenin1 (Ngn1) und Ngn2 in den neuralen Vorlaeuferzellen der Ventrikularzone des dorsalen Cortexes in hohem Masse exprimiert. Wie aus Untersuchungen von unserm Labor gezeigt wurde, beguenstigt es die Entstehung von Neuronen und blockiert gleichzeitig Pro-Astrozyten-Einfluesse. Zum einen inhibiert Ngn den JAK/STAT Signalweg, dessen Aktivierung fuer die Gliogenese noetig ist, indem es die Phosphoylierung von STAT1/3 auf bisher noch unbekannte Weise blockiert. Ausserdem bindet der Transkriptions-Coaktivator cAMP-response element binding protein (CBP), welches auch von den STATs fuer die Transkription benoetigt wird, bevorzugt an Ngn sobald dieses von den Vorlaeuferzellen exprimiert wird. Mit dem Tag E16 nimmt die Neurogenese in vivo wieder stark ab und es setzt die Gliogenese ein, bei der zunaechst ueberwiegend Astrozyten gebildet werden. Faktoren wie leukemia inhibitory factor (LIF) sowie ciliary neurotrophic factor (CNTF) beguenstigen dabei die Astrozytogenese indem sie den JAK/STAT Signalweg aktivieren. Die Bindung von LIF/CNTF fuehrt zur Phosphorylierung von STAT-Transkriptionsfaktoren, die ihrerseits dann an den CBP/p300 Komplex binden und schliesslich die Expression von Astrozyten-spezifischen Genen aktivieren. Die STAT-Faktoren koennen aber erst nach Abfall des Ngn-Spiegels an den Transkriptions-Coaktivator binden, da sich die Bindungsstellen dieser beiden ueberlappen. Um die Hypothese zu ueberpruefen, dass LIF auch die Neurogenese, oder spezifischer, die Wirkung von Ngn positiv beeinflusst, wurden cortikale NPCs von murinen Embryos entnommen und der Wirkung von LIF via Luciferase Assay untersucht. Dabei wurden die Vorlaeuferzellen mit Ngn und einem Reporter transfiziert, welcher den NeuroD-Promoter beinhaltete. NeuroD-Expression findet in der Regel gegen Mitte/Ende der Neurogenese statt und ist wichtig fuer die Reifung von Neuronen. Der Promoter von NeuroD beinhaltet ein E-box Element, an welches Ngn bindet und die Transkription einleitet. Wie unsere ersten Versuche zeigten, verstaerkt LIF die Transkriptionsaktivitaet von Ngn und somit die Transkription von NeuroD. Wenn aber im selben Versuch ein NeuroD-Reporter transfiziert wurde, dessen E-box mutiert war, wurde keine Transkriptionsaktivitaet gemessen, was wiederum bestaetigte, dass der pro-neurale LIF-Effekt ueber Ngn lief und E-box-Bindung noetig war. Um den Einfluss des pro-neuralen Effekts von LIF auf Proteinebene zu testen, wurden NPCs mit Ngn-Adenovirus infiziert und mit LIF stimuliert. Dabei wurden die Zellen auf die Expression von Neuron-spezifischem class III β-tubulin (TuJ1) untersucht. Die Ergebnisse zeigten, dass LIF bei Zellen, die Ngn exprimierten, die Rate der Neuronen von etwa 5% auf etwa 50% anstiegen liess, waehrend LIF bezueglich der Gliogenese (gezeigt durch die Expression von GFAP) in Ngn-exprimierenden Vorlaeuferzellen kaum Wirkung zeigte. Als naechstes sollte untersucht werden ueber welchen Signalweg LIF Ngn aktivierte. LIF bindet zunaechst an LIF receptor β (LIFRβ), der dann an glycoprotein 130 (gp130) bindet. Diese Bindung fuehrt dann zur Aktivierung mehrerer Signalkaskaden: dem JAK/STAT, dem MAPK, dem Akt/PI3K und dem PLCγ/PKC Signalweg. Da der JAK/STAT Signalweg fuer die Gliogenese wichtig ist, lag unser Fokus auf den anderen Signalwegen. Deren Aktivierung wurde dann mit spezifischen Inhibitoren blockiert und, wie auch in den Vorversuchen, die Wirkung von LIF auf Transkriptionsebene (NeuroD) in neuralen Vorlaeuferzellen bestimmt. Dabei zeigte sich, dass die Blockierung des PLCγ/PKC Signalweges die NeuroD-Promoteraktivitaet am starksten inhibierte, waehrend auch LIF´s pro-neurale Wirkung verloren ging. Dementsprechend zeigte die Western Blot Analyse, dass die Expression von class III β-tubulin (TuJ1) durch die Anwendung der PKC Inhibitoren am staerksten inhibiert wurde, wobei auch hier die Stimulation durch LIF keine erhoehte Neurogenese mit sich zog. In weiteren Versuchen konnten wir dann mit Hilfe von Immunoprezipitation demonstrieren, dass LIF die Bindung von Ngn an CBP verstaerkte (eine Bindung, welche durch PKC Inhibitoren aufgehoben wurde), was wiederum zu einer erhoehten Bindung dieses Transkriptionskomplexes an den NeuroD Promoter fuehrte, wie unsere Chromatin Immunoprezipitation (ChIP) Daten beweisen. Dies wiederum laesst darauf schliessen, dass womoeglich diese erhoehte Ngn-CBP/NeuroD-Promoter Bindung der Grund fuer die erhoehte NeuroD-Transkriptionsaktivitaet ist daher auch fuer die erhoehte neuronale Differenzierung. Interessanterweise konnten wir auch zeigen, dass Brahma-related gene 1 (Brg1), eine katalytische Untereinheit des SWI/SWF Komplexes, an den Ngn/CBP cotranscriptionalen Komplex bindet und dass diese Bindung durch LIF-Stimulation verstaerkt wurde. Dies suggeriert wiederum, dass auch Brg1 eine wichtige Rolle waehrend der murinen, cortikalen Neurogenese spielt. Dennoch, in folgenden Experimenten verblieb der Fokus auf Ngn und CBP. Um unsere Hypothese zu bestaetigen, dass PKCδ ein moeglicher Mediator des LIF-Effekts sein koennte, zeigten wir zunaechst, dass die PKCδ-Expression in cortikalen NPCs waehrend der Neurogenese erhoeht ist. Desweiteren demonstrierten wir, dass die Inhibition von PKCδ einen aehnliche Wirkung zeigte wie die Inhibition von PKC mit einem generellen PKC Inhibitor: weder war nach PKCδ-Inhibition eine LIF-induzierte NeuroD-Transkription erzielbar, noch wurde nach LIF-Stimulation der pro-neurale Marker class III β-tubulin/TuJ1 in Ngn1-infizierten NPCs exprimiert. Um aber mehr spezifisch die PKC- und PKCδ-Aktivitaet/Expression zu blockieren transfizierten wir NPCs mit PLCγ oder PKCδ siRNA. Unsere Daten zeigten hierbei, dass siRNA-transfizierte Zellen kein class III β-tubulin mehr aufweisen, was darauf hindeuted, dass PKCδ der potentielle Mediator des pro-neuralen LIF-Effekts ist. Durch unsere in vivo Daten demonstrierten wir schliesslich, dass LIF auch hierbei fuer die Neurogenese von Bedeutung ist. Verglichen wurden die Cortices von E13 LIF Het (heterozygote) und KO (knock out) Maeusen mit denen von WT (wild type) Maeusen. Durch Immunohistologie von Hirnschnitten konnten dabei keine groesseren Unterschiede bezueglich der Expression neuraler Marker beobachtet werden, waehrend aber mit Hilfe der Western Blot Analyse, eine quantitativere Methode, gezeigt wurde, dass LIF Het und KO Maeuse weniger pro-neurale Marker im Cortex exprimieren wie WT Mause. Um auch zu beweisen, dass dies auf eine verringerte Transkription von NeuroD zurueckzufuehren ist, demonstrierten wir mit Hilfe des ChIP Assay, dass LIF Het und KO Maeuse weniger Ngn1-CBP Bindung an den NeuroD-Promoter aufweisen wie WT Maeuse. Diese Experimente veranschaulichen einen eleganten Regulationsmechanismus, durch welchen ein einzelner, extrazellulaerer Faktor die unterschiedliche Differenzierung einer Zelle verstaerkt, abhaengig von der Anwesenheit oder Abwesenheit eines einzelnenn intrazellulaeren Faktors. Auch koennen durch die erlangten Resultate Strategien entworfen werden, durch die in Zukunft die Produktion bestimmter Neurone zur Heilung von verschiedenen, neurodegenerativen Krankheiten erhoeht wird.