Refine
Year of publication
Document Type
- Article (15)
- Diploma Thesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- acute myeloid leukemia (2)
- fibrosis (2)
- p63 (2)
- ACLF (1)
- ACURATE neo (1)
- AEC syndrome (1)
- BCOR (1)
- BCORL1 (1)
- Clinical Trials and Observations (1)
- DNA damage (1)
Institute
Mammalian oocytes are arrested in the dictyate stage of meiotic prophase I for long periods of time, during which the high concentration of the p53 family member TAp63α sensitizes them to DNA damage-induced apoptosis. TAp63α is kept in an inactive and exclusively dimeric state but undergoes rapid phosphorylation-induced tetramerization and concomitant activation upon detection of DNA damage. Here we show that the TAp63α dimer is a kinetically trapped state. Activation follows a spring-loaded mechanism not requiring further translation of other cellular factors in oocytes and is associated with unfolding of the inhibitory structure that blocks the tetramerization interface. Using a combination of biophysical methods as well as cell and ovary culture experiments we explain how TAp63α is kept inactive in the absence of DNA damage but causes rapid oocyte elimination in response to a few DNA double strand breaks thereby acting as the key quality control factor in maternal reproduction.
Simple Summary: Acute myeloid leukemia (AML) is a genetically heterogeneous disease. Clinical phenotypes of frequent mutations and their impact on patient outcome are well established. However, the role of rare mutations often remains elusive. We retrospectively analyzed 1529 newly diagnosed and intensively treated AML patients for mutations of BCOR and BCORL1. We report a distinct co-mutational pattern that suggests a role in disease progression rather than initiation, especially affecting mechanisms of DNA-methylation. Further, we found loss-of-function mutations of BCOR to be independent markers of poor outcomes in multivariable analysis. Therefore, loss-of-function mutations of BCOR need to be considered for AML management, as they may influence risk stratification and subsequent treatment allocation.
Abstract: Acute myeloid leukemia (AML) is characterized by recurrent genetic events. The BCL6 corepressor (BCOR) and its homolog, the BCL6 corepressor-like 1 (BCORL1), have been reported to be rare but recurrent mutations in AML. Previously, smaller studies have reported conflicting results regarding impacts on outcomes. Here, we retrospectively analyzed a large cohort of 1529 patients with newly diagnosed and intensively treated AML. BCOR and BCORL1 mutations were found in 71 (4.6%) and 53 patients (3.5%), respectively. Frequently co-mutated genes were DNTM3A, TET2 and RUNX1. Mutated BCORL1 and loss-of-function mutations of BCOR were significantly more common in the ELN2017 intermediate-risk group. Patients harboring loss-of-function mutations of BCOR had a significantly reduced median event-free survival (HR = 1.464 (95%-Confidence Interval (CI): 1.005–2.134), p = 0.047), relapse-free survival (HR = 1.904 (95%-CI: 1.163–3.117), p = 0.01), and trend for reduced overall survival (HR = 1.495 (95%-CI: 0.990–2.258), p = 0.056) in multivariable analysis. Our study establishes a novel role for loss-of-function mutations of BCOR regarding risk stratification in AML, which may influence treatment allocation.
In dieser Arbeit werden Verfahren vorgestellt, mit dem sich hochaufgelöste wissenschaftliche Illustrationen in einem interaktiven Vorgang erstellen lassen. Die Basis dafür bildet die neu eingeführte GPU-basierte Illustrations-Pipeline, in der auf Grundlage eines 3D-Modells Bildebenen frei angelegt und miteinander kombiniert werden können. In einer Ebene wird ein bestimmter Aspekt der Illustration mit einer auswählbaren Technik gezeigt. Die Parameter der Technik sind interaktiv editierbar. Um Effizienz zu gewährleisten ist das gesamte Verfahren so konzipiert, dass es soweit wie möglich die Berechnungen auf der GPU durchführt. So ist es möglich, dass die Illustrationen mit interaktiven Frameraten gerendert werden.
Previous studies detected an influence of urban characteristics on song traits in passerine birds, that is, song adjustments to ambient noise in urban areas. Several studies already described the effect of weather conditions on the behavior of birds, but not the effect on song traits. We investigate, if song trait variability changes along a continuous urbanity gradient in Frankfurt am Main, Germany. We examined, for the first time on a larger scale, the influence of weather on song parameters. We made song recordings of three common passerine species: the blue and great tit (Cyanistes caeruleus (Linnaeus, 1758) and Parus major Linnaeus, 1758) and the European blackbird (Turdus merula Linnaeus, 1758). We measured different song traits and performed statistical analyses and modeling on a variety of variables—among them urbanity and weather parameters. Remarkably, we found only few cases of a significant influence of urbanity parameters on song traits. The influence of weather parameters (air pressure, atmospheric humidity, air and soil temperatures) on song traits was highly significant. Birds in Frankfurt face high noise pollution and might show different adaptations to high noise levels. The song trait variability of the investigated species is affected more by weather conditions than by urban characteristics in Frankfurt. However, the three species react differently to specific weather parameters. Smaller species seem to be more affected by weather than larger species.
TechQuartier to boost the start-up scene in Frankfurt am Main : interview with Sebastian Schäfer
(2017)
Interview with Sebastian Schäfer, Managing Director TechQuartier, Frankfurt
Mutations of the isocitrate dehydrogenase-1 (IDH1) and IDH2 genes are among the most frequent alterations in acute myeloid leukemia (AML) and can be found in ∼20% of patients at diagnosis. Among 4930 patients (median age, 56 years; interquartile range, 45-66) with newly diagnosed, intensively treated AML, we identified IDH1 mutations in 423 (8.6%) and IDH2 mutations in 575 (11.7%). Overall, there were no differences in response rates or survival for patients with mutations in IDH1 or IDH2 compared with patients without mutated IDH1/2. However, distinct clinical and comutational phenotypes of the most common subtypes of IDH1/2 mutations could be associated with differences in outcome. IDH1-R132C was associated with increased age, lower white blood cell (WBC) count, less frequent comutation of NPM1 and FLT3 internal tandem mutation (ITD) as well as with lower rate of complete remission and a trend toward reduced overall survival (OS) compared with other IDH1 mutation variants and wild-type (WT) IDH1/2. In our analysis, IDH2-R172K was associated with significantly lower WBC count, more karyotype abnormalities, and less frequent comutations of NPM1 and/or FLT3-ITD. Among patients within the European LeukemiaNet 2017 intermediate- and adverse-risk groups, relapse-free survival and OS were significantly better for those with IDH2-R172K compared with WT IDH, providing evidence that AML with IDH2-R172K could be a distinct entity with a specific comutation pattern and favorable outcome. In summary, the presented data from a large cohort of patients with IDH1/2 mutated AML indicate novel and clinically relevant findings for the most common IDH mutation subtypes.
Protein aggregation of the p63 transcription factor underlies severe skin fragility in AEC syndrome
(2018)
The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the C-terminal domain of the p63 gene can cause ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility and severe, long-lasting skin erosions. Despite deep knowledge of p63 functions, little is known about mechanisms underlying disease pathology and possible treatments. Here, we show that multiple AEC-associated p63 mutations, but not those causative of other diseases, lead to thermodynamic protein destabilization, misfolding, and aggregation, similar to the known p53 gain-of-function mutants found in cancer. AEC mutant proteins exhibit impaired DNA binding and transcriptional activity, leading to dominant negative effects due to coaggregation with wild-type p63 and p73. Importantly, p63 aggregation occurs also in a conditional knock-in mouse model for the disorder, in which the misfolded p63 mutant protein leads to severe epidermal defects. Variants of p63 that abolish aggregation of the mutant proteins are able to rescue p63’s transcriptional function in reporter assays as well as in a human fibroblast-to-keratinocyte conversion assay. Our studies reveal that AEC syndrome is a protein aggregation disorder and opens avenues for therapeutic intervention.
Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.
The macrophage-inducible C-type lectin (mincle) is part of the innate immune system and acts as a pattern recognition receptor for pathogen-associated molecular patterns (PAMPS) and damage-associated molecular patterns (DAMPs). Ligand binding induces mincle activation which consequently interacts with the signaling adapter Fc receptor, SYK, and NF-kappa-B. There is also evidence that mincle expressed on macrophages promotes intestinal barrier integrity. However, little is known about the role of mincle in hepatic fibrosis, especially in more advanced disease stages. Mincle expression was measured in human liver samples from cirrhotic patients and donors collected at liver transplantation and in patients undergoing bariatric surgery. Human results were confirmed in rodent models of cirrhosis and acute-on-chronic liver failure (ACLF). In these models, the role of mincle was investigated in liver samples as well as in peripheral blood monocytes (PBMC), tissues from the kidney, spleen, small intestine, and heart. Additionally, mincle activation was stimulated in experimental non-alcoholic steatohepatitis (NASH) by treatment with mincle agonist trehalose-6,6-dibehenate (TDB). In human NASH, mincle is upregulated with increased collagen production. In ApoE deficient mice fed high-fat western diet (NASH model), mincle activation significantly increases hepatic collagen production. In human cirrhosis, mincle expression is also significantly upregulated. Furthermore, mincle expression is associated with the stage of chronic liver disease. This could be confirmed in rat models of cirrhosis and ACLF. ACLF was induced by LPS injection in cirrhotic rats. While mincle expression and downstream signaling via FC receptor gamma, SYK, and NF-kappa-B are upregulated in the liver, they are downregulated in PBMCs of these rats. Although mincle expressed on macrophages might be beneficial for intestinal barrier integrity, it seems to contribute to inflammation and fibrosis once the intestinal barrier becomes leaky in advanced stages of chronic liver disease.