Refine
Year of publication
- 2002 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
- Pharmazie (1)
P2X receptor subunits assemble in the ER of Xenopus oocytes to homomultimeric or heteromultimeric complexes that appear as ATP-gated cation channels at the cell surface. In this work it was intended to investigate the posttranslational modifications such as N-linked glycosylation and disulfide bond formation that is undergone by P2X1 receptors. In addition, the aim of this study was to examine the expression and the quaternary structure of selected P2X receptor isoforms in Xenopus oocytes. The investigation of the quaternary structure of the metabolically or surface labeled His-P2X2 receptor by BN-PAGE revealed that, while the protein complex is only partially assembling in oocytes, the plasma membrane form of the His-P2X2 receptor assembled into trimeric and even hexameric complex as was shown by the BN-PAGE analysis. Besides this finding, it is shown that the His-P2X5 protein that was purified from metabolically or surface labeled oocytes appeared as one single band corresponding to a trimer when analyzed by BN-PAGE. The present study signified that His-P2X6 alone does not reach a defined assembly status and possibly needs the hetero-polymerisation with other P2X subunits to assemble properly for insertion into the plasma membrane. Another finding of this study is that the P2X1 and P2X2 subunits could exist as heteromultimeric protein complexes in the plasma membrane of cells. Purification of surface expressed His-P2X2 subunit allowed the detection of co-injected P2X1 subunit and vice versa in Xenopus oocytes. Incubation with glutardialdehyde led to the cross-linking of P2X2 and P2X1 subunits to dimers and trimers. BN-PAGE analysis of the P2X2/P2X1 complex isolated under nondenaturing conditions from surface-labeled oocytes yielded one distinct band corresponding to a trimeric complex. The analysis of a C-terminally GFP tagged His-P2X1 fusion protein by confocal fluorescence microscopy revealed small clusters of the protein complexes, approximately 4-6 µm in diameter from a diffuse distribution of the protein in the plasma membranes of Xenopus oocytes. The cross-linking or BN-PAGE analysis of the fusion protein resulted in proteins that migrated quantitatively as trimers when purified in digitonin. The analysis of some chimeric constructs confirmed the results of others, which showed that desensitization can be removed from the P2X1 or P2X3 receptor by providing the N-domain from the P2X2 receptor (Werner et al., 1996) The exchange of this domain did not alter the quaternary structure of the chimeras, which showed to be present as trimers when expressed in oocytes. In addition, glycan minus mutants of His-P2X1 receptor were analyzed to examine whether carbohydrate side chains are important for P2X1 subunit assembly, surface expression, or ligand recognition. SDS-PAGE analysis of glycan minus mutants carrying Q instead of N at five individual NXT/S sequons reveals that 284N remains unused because of a proline in the 4 position. The four other sites (153Asn, 184N, 210N, and 300N) carry N-glycans, but solely 300N acquires complex-type carbohydrates. Like parent P2X1 receptor, glycan minus mutants migrate as homotrimers when resolved by blue native PAGE. Recording of ATP-gated currents revealed that elimination of 153N or 210N diminishes or increases functional expression levels, respectively. In addition, elimination of 210N causes a 3-fold reduction of the potency for ATP. If three or all four N-glycosylation sites are simultaneously eliminated, formation of P2X1 receptors is severely impaired or abolished, respectively. It is concluded that at least one N-glycan per subunit of either position is absolutely required for the formation of P2X1 receptors. The SDS-PAGE analysis of surface-labeled His-P2X2 and His-P2X5 receptors revealed that, while the His-P2X2 subunit acquires three complex-type carbohydrates, in case of His-P2X5 polypeptide, only two of the three N-glycans could obtain complex-type carbohydrates during transit of the Golgi apparatus. Furthermore, it was shown that DTT treatment blocked the appearance of newly made His-P2X1 at the plasma membranes of Xenopus oocytes. Also, it was revealed that the effects of DTT on His-P2X1 biogenesis are fully reversible. Removal of the reducing agent leads to subsequent folding and assembly into His-P2X1 receptor complex, followed by transport to the cell surface. The characterization of cysteine minus mutants by SDS PAGE and BN-PAGE demonstrated that, the cysteine substitution in the first cysteine rich domain (C1 - C6) does not have a major effect on assembly for the mutant receptors. In contrast, the replacement of the four cysteine residues (C7 - C10) from the second cysteine rich domain demonstrate a critical importance of this domain for the functional surface expression of P2X1 receptor. The investigations of several double cysteine mutants revealed that according to a similarity in the sensitivity to ATP, the C1 and C6, as well as C2 and C4 and finally C3 and C5 are pairs forming two disulfide bonds in each P2X1 subunit.