Refine
Document Type
- Article (26)
- Preprint (2)
- Conference Proceeding (1)
Language
- English (29)
Has Fulltext
- yes (29)
Is part of the Bibliography
- no (29)
Keywords
- 140Ce (1)
- AGB star (1)
- Electromagnetic transitions (1)
- MACS (1)
- Models & methods for nuclear reactions (1)
- Neutron physics (1)
- Nuclear reactions (1)
- Nucleosynthesis-Star (1)
- Radiative capture (1)
- Resonance reactions (1)
Institute
- Physik (28)
- Biochemie, Chemie und Pharmazie (1)
Destruction of the cosmic γ-ray emitter 26Al in massive stars: study of the key 26Al(n,p) reaction
(2021)
The 26Al(n,p)26Mg reaction is the key reaction impacting on the abundances of the cosmic γ-ray emitter 26Al produced in massive stars and impacts on the potential pollution of the early solar system with 26Al by asymptotic giant branch stars. We performed a measurement of the 26Al(n,p)26Mg cross section at the high-flux beam line EAR-2 at the n_TOF facility (CERN). We report resonance strengths for eleven resonances, nine being measured for the first time, while there is only one previous measurement for the other two. Our resonance strengths are significantly lower than the only previous values available. Our cross-section data range to 150 keV neutron energy, which is sufficient for a reliable determination of astrophysical reactivities up to 0.5 GK stellar temperature.
Accurate neutron capture cross section data for minor actinides (MAs) are required to estimate the production and transmutation rates of MAs in light water reactors with a high burnup, critical fast reactors like Gen-IV systems and other innovative reactor systems such as accelerator driven systems (ADS). Capture reactions of 244Cm open the path for the formation of heavier Cm isotopes and of heavier elements such as Bk and Cf. In addition, 244Cm shares nearly 50% of the total actinide decay heat in irradiated reactor fuels with a high burnup, even after three years of cooling.
Experimental data for this isotope are very scarce due to the difficulties of providing isotopically enriched samples and because the high intrinsic activity of the samples requires the use of neutron facilities with high instantaneous flux. The only two previous experimental data sets for this neutron capture cross section have been obtained in 1969 using a nuclear explosion and, more recently, at J-PARC in 2010. The neutron capture cross sections have been measured at n_TOF with the same samples that the previous experiments in J-PARC. The samples were measured at n_TOF Experimental Area 2 (EAR-2) with three C6D6 detectors and also in Experimental Area 1 (EAR-1) with the Total Absorption Calorimeter (TAC). Preliminary results assessing the quality and limitations of these new experimental datasets are presented for the experiments in both areas. Preliminary yields of both measurements will be compared with evaluated libraries for the first time.
The neutron capture cross section of 154Gd was measured from 1 eV to 300 keV in the experimental area located 185 m from the CERN n_TOF neutron spallation source, using a metallic sample of gadolinium, enriched to 67% in 154Gd. The capture measurement, performed with four C6D6 scintillation detectors, has been complemented by a transmission measurement performed at the GELINA time-of-flight facility (JRC-Geel), thus minimising the uncertainty related to sample composition. An accurate Maxwellian averaged capture cross section (MACS) was deduced over the temperature range of interest for s process nucleosynthesis modelling. We report a value of 880(50) mb for the MACS at kT = 30 keV, significantly lower compared to values available in literature. The new adopted 154Gd(n,γ) cross section reduces the discrepancy between observed and calculated solar s-only isotopic abundances predicted by s-process nucleosynthesis models.
We have measured the γ-rays following neutron capture on 240Pu and 244 Cm at the n_TOF facility at CERN with the Total Absorption Calorimeter (TAC) and with C6D6 organic scintillators. The TAC is made of 40 BaF2 crystals operating in coincidence and covering almost the entire solid angle. This allows to obtain information concerning the energy spectra and the multiplicity of the measured capture γ-ray cascades. Additional information is also obtained from the C6D6 detectors. We have analyzed the measured data in order to draw conclusions about the Photon Strength Functions (PSFs) of 241Pu and 245Cm below their neutron separation energies. The analysis has been performed by fitting the PSFs to the experimental results, using the differential evolution method, in order to find neutron capture cascades capable of reproducing at the same time a great variety of deposited energy spectra.
The 14N(n,p)14C reaction is of interest in neutron capture therapy, where nitrogen-related dose is the main component due to low-energy neutrons, and in astrophysics, where 14N acts as a neutron poison in the s-process. Several discrepancies remain between the existing data obtained in partial energy ranges: thermal energy, keV region and resonance region. Purpose: Measuring the 14N(n,p)14C cross section from thermal to the resonance region in a single measurement for the first time, including characterization of the first resonances, and providing calculations of Maxwellian averaged cross sections (MACS). Method: Time-of-flight technique. Experimental Area 2 (EAR-2) of the neutron time-of-flight (n_TOF) facility at CERN. 10B(n,α)7Li and 235U(n,f) reactions as references. Two detection systems running simultaneously, one on-beam and another off-beam. Description of the resonances with the R-matrix code sammy. Results: The cross section has been measured from sub-thermal energy to 800 keV resolving the two first resonances (at 492.7 and 644 keV). A thermal cross-section (1.809±0.045 b) lower than the two most recent measurements by slightly more than one standard deviation, but in line with the ENDF/B-VIII.0 and JEFF-3.3 evaluations has been obtained. A 1/v energy dependence of the cross section has been confirmed up to tens of keV neutron energy. The low energy tail of the first resonance at 492.7 keV is lower than suggested by evaluated values, while the overall resonance strength agrees with evaluations. Conclusions: Our measurement has allowed to determine the 14N(n,p) cross-section over a wide energy range for the first time. We have obtained cross-sections with high accuracy (2.5 %) from sub-thermal energy to 800 keV and used these data to calculate the MACS for kT = 5 to kT = 100 keV.
Measurement of the 244Cm and 246Cm neutron-induced capture cross sections at the n_TOF facility
(2019)
The neutron capture reactions of the 244Cm and 246Cm isotopes open the path for the formation of heavier Cm isotopes and heavier elements such as Bk and Cf in a nuclear reactor. In addition, both isotopes belong to the minor actinides with a large contribution to the decay heat and to the neutron emission in irradiated fuels. There are only two previous 244Cm and 246Cm capture cross section measurements: one in 1969 using a nuclear explosion [1] and the most recent data measured at J-PARC in 2010 [2]. The data for both isotopes are very scarce due to the difficulties in performing the measurements: high intrinsic activity of the samples and limited facilities capable of providing isotopically enriched samples.
We have measured both neutron capture cross sections at the n_TOF Experimental Area 2 (EAR-2) with three C6 D6 detectors and also at Area 1 (EAR-1) with the TAC. Preliminary results assessing the quality and limitations (back-ground subtraction, measurement technique and counting statistics) of this new experimental datasets are presented and discussed.
An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neutron sources and primordial nucleosynthesis.
The neutron capture cross section of some unstable nuclei is especially relevant for s-process nucleosynthesis studies. This magnitude is crucial to determine the local abundance pattern, which can yield valuable information of the s-process stellar environment. In this work we describe the neutron capture (n,γ) measurement on two of these nuclei of interest, 204Tl and 171Tm, from target production to the final measurement, performed successfully at the n_TOF facility at CERN in 2014 and 2015. Preliminary results on the ongoing experimental data analysis will also be shown. These results include the first ever experimental observation of capture resonances for these two nuclei.
Neutron capture on 241Am plays an important role in the nuclear energy production and also provides valuable information for the improvement of nuclear models and the statistical interpretation of the nuclear properties. A new experiment to measure the 241Am(n, γ) cross section in the thermal region and the first few resonances below 10 eV has been carried out at EAR2 of the n_TOF facility at CERN. Three neutron-insensitive C6D6 detectors have been used to measure the neutron-capture gamma cascade as a function of the neutron time of flight, and then deduce the neutron capture yield. Preliminary results will be presented and compared with previously obtained results at the same facility in EAR1. In EAR1 the gamma-ray background at thermal energies was about 90% of the signal while in EAR2 is up to a 25 factor much more favorable signal to noise ratio. We also extended the low energy limit down to subthermal energies. This measurement will allow a comparison with neutron capture measurements conducted at reactors and using a different experimental technique.
Presolar grains and their isotopic compositions provide valuable constraints to AGB star nucleosynthesis. However, there is a sample of O- and Al-rich dust, known as group 2 oxide grains, whose origin is difficult to address. On the one hand, the 17O/16O isotopic ratios shown by those grains are similar to the ones observed in low-mass red giant stars. On the other hand, their large 18O depletion and 26Al enrichment are challenging to account for. Two different classes of AGB stars have been proposed as progenitors of this kind of stellar dust: intermediate mass AGBs with hot bottom burning, or low mass AGBs where deep mixing is at play. Our models of low-mass AGB stars with a bottom-up deep mixing are shown to be likely progenitors of group 2 grains, reproducing together the 17O/16O, 18O/16O and 26Al/27Al values found in those grains and being less sensitive to nuclear physics inputs than our intermediate-mass models with hot bottom burning.