Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Posttranscriptional gene silencing (1)
- chaperones (1)
- heat stress transcription factors (1)
- siRNA (1)
- thermotolerance (1)
- tomato (1)
Institute
We generated transgenic tomato plants with altered expression of heat stress transcription factor HsfA1. Plants with 10-fold overexpression of HsfA1 (OE plants) were characterized by a singleHsfA1 transgene cassette, whereas plants harboring a tandem inverted repeat of the cassette showed cosuppression (CS plants) by posttranscriptional silencing of the HsfA1 gene connected with formation of small interfering RNAs. Under normal growth conditions, major developmental parameters were similar for wild-type (WT), OE, and CS plants. However, CS plants and fruits were extremely sensitive to elevated temperatures, because heat stress-induced synthesis of chaperones and Hsfs was strongly reduced or lacking. Despite the complexity of the plant Hsf family with at least 17 members in tomato, HsfA1 has a unique function as master regulator for induced thermotolerance. Using transient reporter assays with mesophyll protoplasts from WT tomato, we demonstrated that plasmid-encoded HsfA1 and HsfA2 were well expressed. However, in CS protoplasts the cosuppression phenomenon was faithfully reproduced. Only transformation with HsfA2 expression plasmid led to normal expression of the transcription factor and reporter gene activation, whereas even high amounts of HsfA1 expression plasmids were silenced. Thermotolerance in CS protoplasts was restored by plasmid-borne HsfA2, resulting in expression of chaperones, thermoprotection of firefly luciferase, and assembly of heat stress granules.
The heat stress (hs) response is universal to all organisms. As the cell senses increase in temperature, heat stress transcription factors (Hsfs) are activated to upregulate the expression of a number of genes encoding heat stress proteins (Hsp) which act as molecular chaperones to protect cells against heat damages. In higher plants, the phenomenon seems to be unusually complex both at the level of Hsfs and Hsps (e.g., 21 Hsf encoding genes in Arabidopsis and at least 17 in tomato). Upon prolonged hs, another characteristic property of plant cells is the assembly of large cytosolic aggregates called heat stress granules (HSG), which are composed of Hsps, HsfA2, RNA and RNA-binding proteins. The present work was aimed to understand plant hs response using tomato as a model system. To study the function of tomato Hsfs in their native system, we generated transgenic tomato lines altered in expression of HsfA1, HsfA2, and HsfB1. Tomato plants with 10-fold overexpression of HsfA1 (OE plants) were characterised by integration of a single HsfA1 expression cassette, whereas the plants harbouring a tandem inverted repeat (IR) of the cassette showed cosuppression of HsfA1 (CS plants). The lack of HsfA1 expression in CS plants results from posttranscriptional gene silencing connected with the formation of small interfering RNA (siRNA). Under normal growth conditions, major developmental features were similar for wild-type (WT), OE and CS plants. However, in contrast to the former two, CS plants and fruits were extremely sensitive to elevated temperature because hs-induced synthesis of major chaperones and Hsfs was strongly reduced or lacking. Despite the complexity of the plant Hsf family, the function of tomato HsfA1 is unique as master regulator of induced thermotolerance. On the other hand, maintenance of essential chaperones in CS plants during seed development suggests involvement of other Hsfs and/or transcription factor(s). HsfB1 and HsfA2 transgenic tomato plants, unaffected in thermotolerance, further supported the function of HsfA1 as the major factor regulating hs-inducible genes. Hs87 independent phenotypes of plants with altered expression of HsfB1 indicates developmental role of this Hsf. Using transient reporter assays with mesophyll protoplasts from WT tomato, we demonstrated that plasmids encoding Hsfs A1, A2 and A3 were well expressed which could function as activators for reporter gene expression. However, in protoplasts derived from CS plants, plasmids encoding HsfA2 and HsfA3 were normally expressed but even higher amounts of HsfA1 expression plasmids were completely silenced. Therefore, silencing of HsfA1 in CS plants was also reproduced in its mesophyll protoplasts. Lacking thermotolerance in CS protoplasts could be restored after transformation with expression plasmids encoding functionally equivalent HsfA2 or HsfA3 resulting in (i) expression of chaperones, (ii) survival of the cells at otherwise lethal temperature, (iii) thermoprotection of firefly luciferase, and (iv) assembly of heat stress granules (HSGs). The strong silencing caused by an IR in CS plants opened the possibility of a broad use of RNAi for gene knock-down also in the transient system of mesophyll protoplasts. Using this technology, we attempted to dissect essential components of thermotolerance and HSG assembly. We demonstrated the previously reported function of chaperones such as Hsp70 and Hsp101, and could discriminate the in vivo chaperone functions of different isoforms of Hsp20 and Hsp70 proteins. Hsp17-CI, Hsp70 (hs-inducible isoforms), and Hsp101 are absolutely essential chaperones for thermotolerance in plants. Furthermore, the results also show that despite Hsp17-CI and -CII being major components of HSG complexes, they are dispensable for assembly of these complexes. Based on these results, it is proposed that in the transient protoplast system an approach with gene-specific IRs can be used to discriminate functions of closely related isoforms among protein-families and to dissect complex protein networks.