Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Institute
- Medizin (2)
- Biochemie und Chemie (1)
- Biowissenschaften (1)
Gene trapping is used to introduce insertional mutations into genes of mouse embryonic stem cells (ESCs). It is performed with gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion and provide a DNA tag for rapid identification of the disrupted gene. Gene traps have been employed worldwide to assemble libraries of mouse ESC lines harboring mutations in single genes, which can be used to make mutant mice. However, most of the employed gene trap vectors require gene expression for reporting a gene trap event and therefore genes that are poorly expressed may be under-represented in the existing libraries. To address this problem, we have developed a novel class of gene trap vectors that can induce gene expression at insertion sites, thereby bypassing the problem of intrinsic poor expression. We show here that the insertion of the osteopontin enhancer into several conventional gene trap vectors significantly increases the gene trapping efficiency in high-throughput screens and facilitates the recovery of poorly expressed genes.
Latent transforming growth factor beta binding protein 4 (LTBP4) belongs to the fibrillin/LTBP family of proteins and plays an important role as a structural component of extracellular matrix (ECM) and local regulator of TGFβ signaling. We have previously reported that Ltbp4S knock out mice (Ltbp4S −/−) develop centrilobular emphysema reminiscent of late stage COPD, which could be partially rescued by inactivating the antioxidant protein Sestrin 2 (Sesn2). More recent studies showed that Sesn2 knock out mice upregulate Pdgfrβ-controlled alveolar maintenance programs that protect against cigarette smoke induced pulmonary emphysema. Based on this, we hypothesized that the emphysema of Ltbp4S −/− mice is primarily caused by defective Pdgfrβ signaling. Here we show that LTBP4 induces Pdgfrβ signaling by inhibiting the antioxidant Nrf2/Keap1 pathway in a TGFβ-dependent manner. Overall, our data identified Ltbp4 as a major player in lung remodeling and injury repair.
High-throughput gene trapping is a random approach for inducing insertional mutations across the mouse genome. This approach uses gene trap vectors that simultaneously inactivate and report the expression of the trapped gene at the insertion site, and provide a DNA tag for the rapid identification of the disrupted gene. Gene trapping has been used by both public and private institutions to produce libraries of embryonic stem (ES) cells harboring mutations in single genes. Presently,~ 66% of the protein coding genes in the mouse genome have been disrupted by gene trap insertions. Among these, however, genes encoding signal peptides or transmembrane domains (secretory genes) are underrepresented because they are not susceptible to conventional trapping methods. Here, we describe a high-throughput gene trapping strategy that effectively targets secretory genes. We used this strategy to assemble a library of ES cells harboring mutations in 716 unique secretory genes, of which 61% were not trapped by conventional trapping, indicating that the two strategies are complementary. The trapped ES cell lines, which can be ordered from the International Gene Trap Consortium (http://www.genetrap.org), are freely available to the scientific community.
In allen bislang durchgeführten Experimenten zur Mutagenese von embryonalen Stammzellen war auffällig, dass Gene, die für sekretierte oder membranständige Proteine kodieren, stark unterrepräsentiert waren. Im Rahmen dieser Arbeit wurden zwei Genfallen untersucht, die speziell diese Gene mutieren sollten. Als Selektionskassetten tragen beide Genfallen den 5' Bereich des humanen CD2, der eine kryptische Spleißakzeptorsequenz enthält und für eine Transmembrandomäne kodiert, als Fusion mit der bakteriellen Neomycinphosphotransferase. U3Ceo trägt diese Kassette als klassische retrovirale Genfalle im LTR des Mouse Molony Leukemia Virus, wogegen die ebenfalls retrovirale FlipRosaCeo Genfalle die Selektionskassette im Viruskörper enthält. Diese wird von Rekombinaseerkennungssequenzen flankiert, welche eine konditionale Aktivierung der Mutation für die spätere Analyse in einem Mausmodell ermöglichen. Beide Genfallen zeigten mit ca. 80% aller Integrationen eine hohe Spezifität für Gene, die für sezernierte und membranständige Proteine kodieren. Allerdings war die Frequenz für Insertionen in sogenannte „hot spots“ bei beiden Genfallen aufgrund der geringeren Zahl an Zielgenen höher als bei anderen im GGTC verwendeten Genfallen (z.B. FlipRosabetageo). Innerhalb dieser „hot spots“ zeigte sich die bekannte Präferenz retroviraler Genfallenvektoren, in das 5’ Ende von Genen zu integrieren, wobei hier meist die größten Introns zu finden sind. Ebenso zeigte sich für die in dieser Arbeit untersuchten sekretorischen Genfallen genau wie bei anderen bekannten Genfallen eine bevorzugte Integration in Chromosomen mit einer hohen Gendichte. Die Funktionalität der konditionalen Genfalle konnte in vitro sowohl in Prokaryoten als auch in Eukaryoten durch Einbringen der Genfalle und der jeweiligen Rekombinasen bestätigt werden. In ES Zellen, die eine X-chomosomale Integration aufwiesen, wurde der Mechanismus durch transiente Expression der Rekombinasen in Klonen überprüft. Hierbei stellte sich heraus, dass das Wildtyptranskript eines mutierten Gens nach der einmaligen Rekombination der FlipRosaCeo wieder exprimiert wird und nicht durch die auf dem Gegenstrang befindliche Genfalle beeinflusst wird. Nach einer weiteren Rekombination mittels FLPe konnte der mutagene Ausgangszustand der Genfalle wieder hergestellt werden. Die Mutagenität der beiden Genfallen wurde durch Überprüfung der Konzentration der restlichen endogenen Transkripts der mutierten Gene per quantitativer PCR an X-chromosomalen Klonen analysiert. Hier konnte bei etwa 80% der untersuchten Klone eine sehr starke Mutation des jeweils getroffenen Gens festgestellt werden. Zur in vivo Überprüfung der U3Ceo Genfalle wurde ein Mausmodell durch Blastozysteninjektion des ES Zellklons M076C04 generiert. Die Integration der Genfalle in das erste Intron des Gens C030019F02Rik sollte eine deutliche Verkürzung des membranständigen Genproduktes bewirken. In Gehirnen von homozygoten Mäusen konnte die Expression des Wildtyptranskripts nicht mehr festgestellt werden, so dass diese Mauslinie eine Nullmutation des Gens trägt. Die in dieser Arbeit untersuchte KO Maus zeigte bisher keinen feststellbaren Phänotyp, obwohl das Genprodukt in vielen Spezies hoch konserviert vorliegt und auch nur in bestimmten Bereichen im Organismus nachweisbar ist, so dass eine wichtige Funktion des Proteins anzunehmen ist. Eine weitere Analyse dieser Mauslinie wird sich dieser Arbeit anschließen.