Refine
Year of publication
- 2004 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
Institute
The detailed mechanism of the 20 S proteasome from Thermoplasma acidophilum is unknown. Substrates are degraded processively to small fragments without the release of intermediates, but the basis for this unique degradation mode remains obscure. The proteasome is a molecular machine, but how the different nanocompartments interplay and whether more than one substrate can be treated simultaneously has not been elucidated yet. To address these questions we had to disable the functionality of one aperture in order to dissect whether the other pore can compensate for the loss. As it is challenging to introduce mutations solely around one pore aperture of the highly symmetrical construct, we chose a novel approach by unique orientation of the proteasome at interfaces. For this purpose we purified recombinant 20 S proteasomes, where hexahistidine tags were fused either around the entrances or at the sides. According to electron microscopic studies we immobilized these constructs uniformly either end-on or side-on at metal-chelating interfaces (lipid vesicles, lipid monolayers and self-assembled thiol monolayers). Degradation of small fluorogenic peptides and large proteins like casein was analyzed. Small substrates were degraded with comparable activity by free and immobilized proteasomes, irrespective of their orientation. Thus it can be assumed that peptides can pass the sealed entrance of the 'dead-end' proteasome. However, larger substrates like fluorescently labeled casein were processed near the temperature optimum by side-on immobilized and soluble proteasomes with threefold activity compared to end-on immobilized proteasomes. Hence it can be concluded that one pore is sufficient for substrate entry and product release. In other words, the pore and antechamber can fulfil a triple function in the import and unwinding of substrates and the egress of products. With means of surface plasmon resonance the exact substrate/proteasome stoichiometry could be determined to ~1 for 'dead-end' proteasomes and ~2 for side-on immobilized (active and inactive) proteasomes. Most importantly, a fit with the Hill equation revealed positive cooperativity for side-on immobilized (Hill coefficient ~2) in contrast to end-on immobilized proteasomes (Hill coefficient ~1). Thus in case of soluble proteasomes two substrates bind presumably in opposite antechambers with positive cooperativity. The off-rate of casein as substrate is twofold for the active side-on immobilized proteasome in comparison to the end-on immobilized proteasome. The exact 2:1 stoichiometry of the off-rates equals the ratio of exit pathways amenable in case of side-on orientated versus 'dead-end' immobilized proteasomes. Thus crevices along the cylindrical body of the 20 S proteasome seem not to participate in the egress of small products. An inactive proteasome mutant displays a concentration-dependent off-kinetic against casein. Accordingly, the off-rate of the bisubstrate:proteasome complex can be attributed around half the value of the monosubstrate:proteasome complex. Consequently, substrates exit the inactive proteasome via the route of access due to obstruction of the trans side with an entering substrate. Hence the active proteasomes have to chop substrates down to small fragments prior to release through both pores. Thus the processive degradation mode might result from positive binding cooperativity. The on-rate constants for casein suggested that substrate association represents a two-step process comprising a rate-limiting translocation step and a fast binding step. As fluorescence cross-correlation revealed that two substrates can be co-localized in the proteasome and bind successively with increasing affinity (KD,1 = 8 µM versus KD,2 = 700 nM), an allosteric transition in the proteasome can be assumed. Combining our results with the data from other research groups led to a mechanistic model for the 20 S proteasome. Accordingly, the first substrate undergoes a slow translocation step, binds in the antechamber and diffuses subsequently to the catalytic centers, where it is degraded. By switching on the catalytic activity, the pores at both termini are dilated via conformational changes. Hence entry of the second substrate into the proteasome is facilitated due to omission of the rate-determining translocation step. The second substrate is either accommodated in the antechamber before it is processed (alternating degradation) or, most probably, is directly threaded into the central cavity (simultaneous degradation). As effusing peptides compete with entering proteins for binding in the antechamber, the pores are kept in an open state. After finishing digestion the pores are closed and a new degradation cycle can be reinitiated. In summary, substrate association with the proteasome underlies an ordered alternating binding mechanism in contrast to the random mode of degradation. Thus the two-stroke engine offers the advantage of speeding up degradation without enhancing complexity.