Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- 16p11.2 (1)
- Autism (1)
- CRISPR/Cas9 (1)
- Kynurenine (1)
- Lafora disease (1)
- Quinolinate phosphoribosyltransferase (1)
- Quinolinic acid (1)
- Sholl analysis (1)
- epilepsy (1)
- genetics (1)
Institute
Background: Altered neuronal development is discussed as the underlying pathogenic mechanism of autism spectrum disorders (ASD). Copy number variations of 16p11.2 have recurrently been identified in individuals with ASD. Of the 29 genes within this region, quinolinate phosphoribosyltransferase (QPRT) showed the strongest regulation during neuronal differentiation of SH-SY5Y neuroblastoma cells. We hypothesized a causal relation between this tryptophan metabolism-related enzyme and neuronal differentiation. We thus analyzed the effect of QPRT on the differentiation of SH-SY5Y and specifically focused on neuronal morphology, metabolites of the tryptophan pathway, and the neurodevelopmental transcriptome.
Methods: The gene dosage-dependent change of QPRT expression following Chr16p11.2 deletion was investigated in a lymphoblastoid cell line (LCL) of a deletion carrier and compared to his non-carrier parents. Expression of QPRT was tested for correlation with neuromorphology in SH-SY5Y cells. QPRT function was inhibited in SH-SY5Y neuroblastoma cells using (i) siRNA knockdown (KD), (ii) chemical mimicking of loss of QPRT, and (iii) complete CRISPR/Cas9-mediated knock out (KO). QPRT-KD cells underwent morphological analysis. Chemically inhibited and QPRT-KO cells were characterized using viability assays. Additionally, QPRT-KO cells underwent metabolite and whole transcriptome analyses. Genes differentially expressed upon KO of QPRT were tested for enrichment in biological processes and co-regulated gene-networks of the human brain.
Results: QPRT expression was reduced in the LCL of the deletion carrier and significantly correlated with the neuritic complexity of SH-SY5Y. The reduction of QPRT altered neuronal morphology of differentiated SH-SY5Y cells. Chemical inhibition as well as complete KO of the gene were lethal upon induction of neuronal differentiation, but not proliferation. The QPRT-associated tryptophan pathway was not affected by KO. At the transcriptome level, genes linked to neurodevelopmental processes and synaptic structures were affected. Differentially regulated genes were enriched for ASD candidates, and co-regulated gene networks were implicated in the development of the dorsolateral prefrontal cortex, the hippocampus, and the amygdala.
Conclusions: In this study, QPRT was causally related to in vitro neuronal differentiation of SH-SY5Y cells and affected the regulation of genes and gene networks previously implicated in ASD. Thus, our data suggest that QPRT may play an important role in the pathogenesis of ASD in Chr16p11.2 deletion carriers.
Juvenile myoclonic epilepsy (JME) is a common epilepsy syndrome characterized by bilateral myoclonic and tonic-clonic seizures typically starting in adolescence and responding well to medication. Misdiagnosis of a more severe progressive myoclonus epilepsy (PME) as JME has been suggested as a cause of drug-resistance. Medical records of the Epilepsy Center Hessen-Marburg between 2005 and 2014 were automatically selected using keywords and manually reviewed regarding the presence of a JME diagnosis at any timepoint. The identified patients were evaluated regarding seizure outcome and drug resistance according to ILAE criteria. 87/168 identified JME patients were seizure-free at last follow-up including 61 drug-responsive patients (group NDR). Seventy-eight patients were not seizure-free including 26 drug-resistant patients (group DR). Valproate was the most efficacious AED. The JME diagnosis was revised in 7 patients of group DR including 6 in whom the diagnosis had already been questioned or revised during clinical follow-up. One of these was finally diagnosed with PME (genetically confirmed Lafora disease) based on genetic testing. She was initially reviewed at age 29 yrs and considered to be inconsistent with PME. Intellectual disability (p = 0.025), cognitive impairment (p < 0.001), febrile seizures in first-degree relatives (p = 0.023) and prominent dialeptic seizures (p = 0.009) where significantly more frequent in group DR. Individuals with PME are rarely found among drug-resistant alleged JME patients in a tertiary epilepsy center. Even a very detailed review by experienced epileptologists may not identify the presence of PME before the typical features evolve underpinning the need for early genetic testing in drug-resistant JME patients.