Refine
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- aDGVM (2)
- CO2 fertilization (1)
- Cambio global (1)
- RCP (1)
- SSP (1)
- biome shifts and transitions (1)
- carbon stocks (1)
- climate change (1)
- ensemble simulations (1)
- global change (1)
Aboveground and belowground biomass compartments of vegetation fulfil different functions and they are coupled by complex interactions. These compartments exchange water, carbon and nutrients and the belowground biomass compartment has the capacity to buffer vegetation dynamics when aboveground biomass is removed by disturbances such as herbivory or fire. However, despite their importance, root-shoot interactions are often ignored in more heuristic vegetation models. Here, we present a simple two-compartment grassland model that couples aboveground and belowground biomass. In this model, the growth of belowground biomass is influenced by aboveground biomass and the growth of aboveground biomass is influenced by belowground biomass. We used the model to explore how the dynamics of a grassland ecosystem are influenced by fire and grazing. We show that the grassland system is most persistent at intermediate levels of aboveground-belowground coupling. In this situation, the system can sustain more extreme fire or grazing regimes than in the case of strong coupling. In contrast, the productivity of the system is maximised at high levels of coupling. Our analysis suggests that the yield of a grassland ecosystem is maximised when coupling is strong, however, the intensity of disturbance that can be sustained increases dramatically when coupling is intermediate. Hence, the model predicts that intermediate coupling should be selected for as it maximises the chances of persistence in disturbance driven ecosystems.
The forest, savanna, and grassland biomes, and the transitions between them, are expected to undergo major changes in the future due to global climate change. Dynamic global vegetation models (DGVMs) are very useful for understanding vegetation dynamics under the present climate, and for predicting its changes under future conditions. However, several DGVMs display high uncertainty in predicting vegetation in tropical areas. Here we perform a comparative analysis of three different DGVMs (JSBACH, LPJ-GUESS-SPITFIRE and aDGVM) with regard to their representation of the ecological mechanisms and feedbacks that determine the forest, savanna, and grassland biomes, in an attempt to bridge the knowledge gap between ecology and global modeling. The outcomes of the models, which include different mechanisms, are compared to observed tree cover along a mean annual precipitation gradient in Africa. By drawing on the large number of recent studies that have delivered new insights into the ecology of tropical ecosystems in general, and of savannas in particular, we identify two main mechanisms that need improved representation in the examined DGVMs. The first mechanism includes water limitation to tree growth, and tree–grass competition for water, which are key factors in determining savanna presence in arid and semi-arid areas. The second is a grass–fire feedback, which maintains both forest and savanna presence in mesic areas. Grasses constitute the majority of the fuel load, and at the same time benefit from the openness of the landscape after fires, since they recover faster than trees. Additionally, these two mechanisms are better represented when the models also include tree life stages (adults and seedlings), and distinguish between fire-prone and shade-tolerant forest trees, and fire-resistant and shade-intolerant savanna trees. Including these basic elements could improve the predictive ability of the DGVMs, not only under current climate conditions but also and especially under future scenarios.
The forest, savanna, and grassland biomes, and the transitions between them, are expected to undergo major changes in the future, due to global climate change. Dynamic Global Vegetation Models (DGVMs) are very useful to understand vegetation dynamics under present climate, and to predict its changes under future conditions. However, several DGVMs display high uncertainty in predicting vegetation in tropical areas. Here we perform a comparative analysis of three different DGVMs (JSBACH, LPJ-GUESS-SPITFIRE and aDGVM) with regard to their representation of the ecological mechanisms and feedbacks that determine the forest, savanna and grassland biomes, in an attempt to bridge the knowledge gap between ecology and global modelling. Model outcomes, obtained including different mechanisms, are compared to observed tree cover along a mean annual precipitation gradient in Africa. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the ecology of tropical ecosystems in general, and of savannas in particular, we identify two main mechanisms that need an improved representation in the DGVMs. The first mechanism includes water limitation to tree growth, and tree-grass competition for water, which are key factors in determining savanna presence in arid and semi-arid areas. The second is a grass-fire feedback, which maintains both forest and savanna occurrences in mesic areas. Grasses constitute the majority of the fuel load, and at the same time benefit from the openness of the landscape after fires, since they recover faster than trees. Additionally, these two mechanisms are better represented when the models also include tree life stages (adults and seedlings), and distinguish between fire-prone and shade-tolerant savanna trees, and fire-resistant and shade-intolerant forest trees. Including these basic elements could improve the predictive ability of the DGVMs, not only under current climate conditions but also and especially under future scenarios.
Anthropogenic climate change is expected to impact ecosystem structure, biodiversity and ecosystem services in Africa profoundly. We used the adaptive Dynamic Global Vegetation Model (aDGVM), which was originally developed and tested for Africa, to quantify sources of uncertainties in simulated African potential natural vegetation towards the end of the 21st century. We forced the aDGVM with regionally downscaled high‐resolution climate scenarios based on an ensemble of six general circulation models (GCMs) under two representative concentration pathways (RCPs 4.5 and 8.5). Our study assessed the direct effects of climate change and elevated CO2 on vegetation change and its plant‐physiological drivers. Total increase in carbon in aboveground biomass in Africa until the end of the century was between 18% to 43% (RCP4.5) and 37% to 61% (RCP8.5) and was associated with woody encroachment into grasslands and increased woody cover in savannas. When direct effects of CO2 on plants were omitted, woody encroachment was muted and carbon in aboveground vegetation changed between –8 to 11% (RCP 4.5) and –22 to –6% (RCP8.5). Simulated biome changes lacked consistent large‐scale geographical patterns of change across scenarios. In Ethiopia and the Sahara/Sahel transition zone, the biome changes forecast by the aDGVM were consistent across GCMs and RCPs. Direct effects from elevated CO2 were associated with substantial increases in water use efficiency, primarily driven by photosynthesis enhancement, which may relieve soil moisture limitations to plant productivity. At the ecosystem level, interactions between fire and woody plant demography further promoted woody encroachment. We conclude that substantial future biome changes due to climate and CO2 changes are likely across Africa. Because of the large uncertainties in future projections, adaptation strategies must be highly flexible. Focused research on CO2 effects, and improved model representations of these effects will be necessary to reduce these uncertainties.
Africa's protected areas (PAs) are the last stronghold of the continent's unique biodiversity, but they appear increasingly threatened by climate change, substantial human population growth, and land-use change. Conservation planning is challenged by uncertainty about how strongly and where these drivers will interact over the next few decades. We investigated the combined future impacts of climate-driven vegetation changes inside African PAs and human population densities and land use in their surroundings for 2 scenarios until the end of the 21st century. We used the following 2 combinations of the shared socioeconomic pathways (SSPs) and representative greenhouse gas concentration pathways (RCPs): the “middle-of-the-road” scenario SSP2–RCP4.5 and the resource-intensive “fossil-fueled development” scenario SSP5–RCP8.5. Climate change impacts on tree cover and biome type (i.e., desert, grassland, savanna, and forest) were simulated with the adaptive dynamic global vegetation model (aDGVM). Under both scenarios, most PAs were adversely affected by at least 1 of the drivers, but the co-occurrence of drivers was largely region and scenario specific. The aDGVM projections suggest considerable climate-driven tree cover increases in PAs in today's grasslands and savannas. For PAs in West Africa, the analyses revealed climate-driven vegetation changes combined with hotspots of high future population and land-use pressure. Except for many PAs in North Africa, future decreases in population and land-use pressures were rare. At the continental scale, SSP5–RCP8.5 led to higher climate-driven changes in tree cover and higher land-use pressure, whereas SSP2–RCP4.5 was characterized by higher future population pressure. Both SSP–RCP scenarios implied increasing challenges for conserving Africa's biodiversity in PAs. Our findings underline the importance of developing and implementing region-specific conservation responses. Strong mitigation of future climate change and equitable development scenarios would reduce ecosystem impacts and sustain the effectiveness of conservation in Africa.
In this study, we use simulations from seven global vegetation models to provide the first multi‐model estimate of fire impacts on global tree cover and the carbon cycle under current climate and anthropogenic land use conditions, averaged for the years 2001–2012. Fire globally reduces the tree covered area and vegetation carbon storage by 10%. Regionally, the effects are much stronger, up to 20% for certain latitudinal bands, and 17% in savanna regions. Global fire effects on total carbon storage and carbon turnover times are lower with the effect on gross primary productivity (GPP) close to 0. We find the strongest impacts of fire in savanna regions. Climatic conditions in regions with the highest burned area differ from regions with highest absolute fire impact, which are characterized by higher precipitation. Our estimates of fire‐induced vegetation change are lower than previous studies. We attribute these differences to different definitions of vegetation change and effects of anthropogenic land use, which were not considered in previous studies and decreases the impact of fire on tree cover. Accounting for fires significantly improves the spatial patterns of simulated tree cover, which demonstrates the need to represent fire in dynamic vegetation models. Based upon comparisons between models and observations, process understanding and representation in models, we assess a higher confidence in the fire impact on tree cover and vegetation carbon compared to GPP, total carbon storage and turnover times. We have higher confidence in the spatial patterns compared to the global totals of the simulated fire impact. As we used an ensemble of state‐of‐the‐art fire models, including effects of land use and the ensemble median or mean compares better to observational datasets than any individual model, we consider the here presented results to be the current best estimate of global fire effects on ecosystems.