Refine
Year of publication
- 2012 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
Chemical contamination of the environment and thus of aquatic ecosystems is steadily increasing. Whenever environmental pollutants enter a water body, they affect not only the water, but also the sediment. Substances that bind to sediment particles can be stored for a long time, whereby sediments act as sinks for some contaminants. Therefore, sediment
assessments often more accurately describe the contamination of a water body than investigations of the water itself. Among environmental chemicals, endocrine disrupting compounds (EDCs) have gained more and more attention in recent years. Since they interfere with endocrine systems and may disturb reproduction, they endanger the survival of populations or even species. Hazardous substances enter the aquatic environment by different pathways, with sewage treatment plants (STPs) belonging to the most important contamination sources.The main objective of this work is a comprehensive sediment assessment of predominantly small surface waters in the German federal state of Hesse. The 50 study sites, located in 44 different creeks and small rivers, are situated in the densely populated and economically important Frankfurt/Rhine-Main area, as well as in rural and less urbanized regions.
Chemical analytical data, provided by the Hessian Agency for the Environment and Geology (HLUG), indicated different contamination levels of the study sites. In order to investigate the general toxicity of the sediment samples, the oligochaete Lumbriculus variegatus and the midge Chironomus riparius were exposed to whole sediments and apical endpoints regarding biomass, survival, and reproduction were determined. In further experiments, special attention was paid to the contamination with endocrine active compounds. For this purpose, the reproductive success of the New Zealand mudsnail Potamopyrgus antipodarum was analyzed after exposure to whole sediments. Additionally, a yeast-based reporter gene assay was applied with sediment eluates to assess the estrogenic and androgenic activity of the samples. Biotest results were compared with chemical analysis data to investigate whether the test organisms reflect the measured pollution of the study sites and if the observed effects can be explained by chemical contamination.
Five study sites, all located less than 1 km downstream of a STP discharger, were selected for further investigations based on the results of the sediment monitoring. The sediments from these sites were conspicuous due to their general toxic and/or estrogenic activity. In order to investigate whether the observed effects can be ascribed to the effluents, an active biomonitoring study was conducted with the mudsnail P. antipodarum and the zebra mussel Dreissena polymorpha, exposed at study sites located up- and downstream of the discharger.
In addition to endocrine activity, genotoxic effects were investigated using the comet assay and the micronucleus assay. Endocrine activity was examined based on the reproductive output of P. antipodarum and the content of vitellogenin-like proteins in D. polymorpha. Yeast-based reporter gene assays were used to estimate the endocrine potential (estrogen, anti-estrogen, anti-androgen, dioxin-like) of sediment and water samples.
22% of the 50 sediments showed ecologically relevant effects in the biotests with L. variegatus and C. riparius. Only one sediment caused a relevant effect on both test organisms, while the other ten positively tested sediments affected either L. variegatus or C. riparius, probably due to differences in inter-species sensitivities. This suggests that a combination of different biotests is necessary for a comprehensive evaluation of sediment toxicity. 78% of the sediments caused a significantly increased number of embryos in P. antipodarum, which could be ascribed to estrogenic contamination of the sediment samples. An increase in the number of embryos by 60%, as observed in this study, and an associated increase in population size may result in the displacement of other, less competitive species.
In the in vitro tests, 66% of the sediments showed estrogenic activity and 68% showed androgenic activity. Maximum observed values were 40.9 ng EEQ/kg sediment (EEQ = estradiol equivalent) for estrogenic and 93.4 ng TEQ/kg sediment (TEQ = testosterone equivalent) for androgenic activity. Natural and synthetic hormones as well as alkylphenols were the major contributors to the total estrogenicity of environmental samples in several other studies, and are likely responsible for a large part of the estrogenic activity in this case as well. Similarly, androgenic activity is mainly due to natural steroids and their metabolites.
Bioassay results reflect the analytically measured contamination levels at the study sites only very infrequently. This can be ascribed to the occurrence of integrated effects of chemical mixtures present in the sediments. Additionally, effects of substances not included in the analytical program or of substances present in concentrations below the detection limit of the chemical analytical investigations as well as varying bioavailabilities might be relevant. The fact that a large part of the observed effects cannot be explained by the chemical contamination demonstrates the need for effect studies in ecotoxicological sediment assessments.
In order to identify possible causes for the effects observed in the sediment monitoring, e.g. contamination sources, the area types (urban fabrics, arable lands, pasturages, etc.) of the catchment areas belonging to the study sites were analyzed. No significant differences were found between the area profiles of the sampling sites with and without effects in the biotests.
The results indicate that the contamination responsible for the observed effects can be ascribed to different sources. Furthermore, study sites whose sediments exerted significant effects in biotests were located in anthropogenic as well as in predominantly natural areas. The active biomonitoring study at STPs revealed genotoxic and endocrine effects only sporadically.
However, in the in vitro tests considerable endocrine activities of sediment and water samples were determined. No conclusive picture emerges as to whether the observed effects occur more frequently downstream of the dischargers, and thus could be attributed to a contamination by sewage. This indicates that contamination sources other than STP dischargers, for example agricultural runoff, may contribute to the observed effects. Weaker effects and biological activities downstream of a discharger compared to an upstream site might be ascribed to a dilution effect by the effluents. A comparison of the measured in vitro estrogenicity with exposure studies described in the literature shows that adverse effects in aquatic organisms can be expected at the EEQ concentrations determined in the present study.
The results of the sediment monitoring and the STP study revealed a widespread endocrine pollution of small surface waters in Hesse. The fact that the bioassay results only rarely reflect study site contamination as determined by chemical analysis demonstrates the need for effect studies in comprehensive sediment assessments. In some cases STP dischargers increased, in other cases they decreased the observed in vivo effects and in vitro activity of environmental samples. Transferring the results obtained in laboratory studies to the field, adverse effects on aquatic ecosystems can be expected. The study illustrates the need for restrictive measures that contribute to the removal or reduction of environmental pollutants.
For the identification of substances that have so far not been linked to adverse effects on the environment, methods such as effect-directed analyses (EDA) or toxicity identification evaluation (TIE) should be increasingly applied in future studies. Furthermore, bioassays for the assessment of endocrine activity should be implemented in standardized monitoring programs.