Refine
Document Type
- Article (13)
Language
- English (13)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- CysLTR1 (2)
- MLKL (2)
- Apoptosis (1)
- Burkitt’s lymphoma (1)
- Cysteine‐Rich Domain (CRD) (1)
- Drug therapy (1)
- Homeostasis (1)
- Macroautophagy (1)
- Necroptosis (1)
- Pre‐Ligand Assembly Domain (PLAD) (1)
Institute
- Medizin (13)
- Biochemie und Chemie (1)
- Biochemie, Chemie und Pharmazie (1)
Ubiquitination relies on a subtle balance between selectivity and promiscuity achieved through specific interactions between ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). Here, we report how a single aspartic to glutamic acid substitution acts as a dynamic switch to tip the selectivity balance of human E2s for interaction toward E3 RING-finger domains. By combining molecular dynamic simulations, experimental yeast-two-hybrid screen of E2-E3 (RING) interactions and mutagenesis, we reveal how the dynamics of an internal salt-bridge network at the rim of the E2-E3 interaction surface controls the balance between an “open”, binding competent, and a “closed”, binding incompetent state. The molecular dynamic simulations shed light on the fine mechanism of this molecular switch and allowed us to identify its components, namely an aspartate/glutamate pair, a lysine acting as the central switch and a remote aspartate. Perturbations of single residues in this network, both inside and outside the interaction surface, are sufficient to switch the global E2 interaction selectivity as demonstrated experimentally. Taken together, our results indicate a new mechanism to control E2-E3 interaction selectivity at an atomic level, highlighting how minimal changes in amino acid side-chain affecting the dynamics of intramolecular salt-bridges can be crucial for protein-protein interactions. These findings indicate that the widely accepted sequence-structure-function paradigm should be extended to sequence-structure-dynamics-function relationship and open new possibilities for control and fine-tuning of protein interaction selectivity.
Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis
(2021)
Lytic forms of programmed cell death, like necroptosis, are characterised by cell rupture and the release of cellular contents, often provoking inflammatory responses. In the recent years, necroptosis has been shown to play important roles in human diseases like cancer, infections and ischaemia/reperfusion injury. Coordinated interactions between RIPK1, RIPK3 and MLKL lead to the formation of a dedicated death complex called the necrosome that triggers MLKL-mediated membrane rupture and necroptotic cell death. Necroptotic cell death is tightly controlled by post-translational modifications, among which especially phosphorylation has been characterised in great detail. Although selective ubiquitination is relatively well-explored in the early initiation stages of necroptosis, the mechanisms and functional consequences of RIPK3 and MLKL ubiquitination for necrosome function and necroptosis are only starting to emerge. This review provides an overview on how site-specific ubiquitination of RIPK3 and MLKL regulates, fine-tunes and reverses the execution of necroptotic cell death.
Ataxia-Telangiectasia (A-T), a pleiotropic chromosomal breakage syndrome, is caused by the loss of the kinase Ataxia-telangiectasia mutated (ATM). ATM is not only involved in the response to DNA damage, but also in sensing and counteracting oxidative stress. Since a disturbed redox balance has been implicated in the pathophysiology of A-T lung disease, we aimed to further explore the interplay between ATM and oxidative stress in lung cells. Using a kinetic trapping approach, we could demonstrate an interaction between the trapping mutant TRX1-CS and ATM upon oxidative stress. We could further show that combined inhibition of thioredoxin reductase (TrxR) and ATM kinase activity, using Auranofin and KU55933 respectively, induced an increase in cellular reactive oxygen species (ROS) levels and protein oxidation in lung cells. Furthermore, ATM inhibition sensitized lung cells to Auranofin-induced cell death that could be rescued by ROS scavengers. As a consequence, targeted reduction of ATM by TRX1 could serve as a regulator of oxidative ATM activation and contribute to the maintenance of the cellular redox homeostasis. These results highlight the importance of the redox-active function of ATM in preventing ROS accumulation and cell death in lung cells.
Rhabdomyosarcoma (RMS) cells have recently been reported to be sensitive to oxidative stress. Therefore, we investigated whether concomitant inhibition of the two main antioxidant defense pathways, that is, the thioredoxin (TRX) and the glutathione (GSH) systems, presents a new strategy to trigger cell death in RMS. In this study, we discover that GSH-depleting agents, i.e. γ-glutamylcysteine synthetase inhibitor, buthionine sulfoximine (BSO) or the cystine/glutamate antiporter inhibitor erastin (ERA), synergize with thioredoxin reductase (TrxR) inhibitor auranofin (AUR) to induce cell death in RMS cells. Interestingly, AUR causes accumulation of ubiquitinated proteins when combined with BSO or ERA, in line with recent reports showing that AUR inhibits the proteasome besides TrxR. Consistently, AUR/BSO or AUR/ERA cotreatment increases ubiquitination and expression of the short-lived proteins NOXA and MCL-1, accompanied by increased binding of NOXA to MCL-1. Notably, NOXA knockdown significantly rescues RMS cells from AUR/BSO- or AUR/ERA-induced cell death. In addition, AUR acts together with BSO or ERA to stimulate BAX/BAK and caspase activation. Of note, BSO or ERA abolish the AUR-stimulated increase in GSH levels, leading to reduced GSH levels upon cotreatment. Although AUR/BSO or AUR/ERA cotreatment enhances reactive oxygen species (ROS) production, only thiol-containing antioxidants (i.e., N-acetylcysteine (NAC), GSH), but not the non-thiol-containing ROS scavenger α-Tocopherol consistently suppress AUR/BSO- and AUR/ERA-stimulated cell death in both cell lines. Importantly, re-supply of GSH or its precursor NAC completely prevents AUR/ERA- and AUR/BSO-induced accumulation of ubiquitinated proteins, NOXA upregulation and cell death, indicating that GSH depletion rather than ROS production is critical for AUR/BSO- or AUR/ERA-mediated cell death. Thus, by demonstrating that GSH-depleting agents enhance the antitumor activity of AUR, we highlight new treatment options for RMS by targeting the redox homeostasis.
USP22 controls necroptosis by regulating receptor-interacting protein kinase 3 ubiquitination
(2020)
Dynamic control of ubiquitination by deubiquitinating enzymes is essential for almost all biological processes. Ubiquitin-specific peptidase 22 (USP22) is part of the SAGA complex and catalyzes the removal of mono-ubiquitination from histones H2A and H2B, thereby regulating gene transcription. However, novel roles for USP22 have emerged recently, such as tumor development and cell death. Apart from apoptosis, the relevance of USP22 in other programmed cell death pathways still remains unclear. Here, we describe a novel role for USP22 in controlling necroptotic cell death in human tumor cell lines. Loss of USP22 expression significantly delays TNFα/Smac mimetic/zVAD.fmk (TBZ)-induced necroptosis, without affecting TNFα-mediated NF-κB activation or extrinsic apoptosis. Ubiquitin remnant profiling identified receptor-interacting protein kinase 3 (RIPK3) lysines 42, 351, and 518 as novel, USP22-regulated ubiquitination sites during necroptosis. Importantly, mutation of RIPK3 K518 reduced necroptosis-associated RIPK3 ubiquitination and amplified necrosome formation and necroptotic cell death. In conclusion, we identify a novel role of USP22 in necroptosis and further elucidate the relevance of RIPK3 ubiquitination as crucial regulator of necroptotic cell death.
Pancreatic cancer (PC) still remains a major cause of cancer-related death worldwide and alternative treatments are urgently required. A common problem of PC is the development of resistance against apoptosis that limits therapeutic success. Here we demonstrate that the prototypical Smac mimetic BV6 cooperates with the stimulator of interferon (IFN) genes (STING) ligand 2′,3′-cyclic guanosine monophosphate–adenosine monophosphate (2′3′-cGAMP) to trigger necroptosis in apoptosis-deficient PC cells. Pharmacological inhibition of key components of necroptosis signaling, such as receptor-interacting protein 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL), significantly rescues PC cells from 2′3′-cGAMP/BV6/zVAD.fmk-mediated cell death, suggesting the induction of necroptosis. Consistently, 2′3′-cGAMP/BV6 co-treatment promotes phosphorylation of MLKL. Furthermore, we show that 2′3′-cGAMP stimulates the production of type I IFNs, which cooperate with BV6 to trigger necroptosis in apoptosis-deficient settings. STING silencing via siRNA or CRISPR/Cas9-mediated gene knockout protects PC cells from 2′3′-cGAMP/BV6/zVAD.fmk-mediated cell death. Interestingly, we demonstrate that nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNFα), and IFN-regulatory factor 1 (IRF1) signaling are involved in triggering 2′3′-cGAMP/BV6/zVAD.fmk-induced necroptosis. In conclusion, we show that activated STING and BV6 act together to exert antitumor effects on PC cells with important implications for the design of new PC treatment concepts.
Interferons (IFNs) are key players in the tumor immune response and act by inducing the expression of IFN-stimulated genes (ISGs). Here, we identify the mixed-lineage kinase domain-like pseudokinase (MLKL) as an ISG in various cancer cell lines. Both type I and type II IFNs increase the expression of MLKL indicating that MLKL up-regulation is a general feature of IFN signaling. IFNγ up-regulates mRNA as well as protein levels of MLKL demonstrating that IFNγ transcriptionally regulates MLKL. This notion is further supported by Actinomycin D chase experiments showing that IFNγ-stimulated up-regulation of MLKL is prevented in the presence of the transcriptional inhibitor Actinomycin D. Also, knockdown of the transcription factor IFN-regulatory factor 1 (IRF1) and signal transducer and activator of transcription (STAT) 1 as well as knockout of IRF1 significantly attenuate IFNγ-mediated induction of MLKL mRNA levels. Up-regulation of MLKL by IFNγ provides a valuable tool to sensitize cells towards necroptotic cell death and to overcome apoptosis resistance of cancer cells.
Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells
(2018)
Autophagy is a well-described degradation mechanism that promotes cell survival upon nutrient starvation and other forms of cellular stresses. In addition, there is growing evidence showing that autophagy can exert a lethal function via autophagic cell death (ACD). As ACD has been implicated in apoptosis-resistant glioblastoma (GBM), there is a high medical need for identifying novel ACD-inducing drugs. Therefore, we screened a library containing 70 autophagy-inducing compounds to induce ATG5-dependent cell death in human MZ-54 GBM cells. Here, we identified three compounds, i.e. loperamide, pimozide, and STF-62247 that significantly induce cell death in several GBM cell lines compared to CRISPR/Cas9-generated ATG5- or ATG7-deficient cells, pointing to a death-promoting role of autophagy. Further cell death analyses conducted using pharmacological inhibitors revealed that apoptosis, ferroptosis, and necroptosis only play minor roles in loperamide-, pimozide- or STF-62247-induced cell death. Intriguingly, these three compounds induce massive lipidation of the autophagy marker protein LC3B as well as the formation of LC3B puncta, which are characteristic of autophagy. Furthermore, loperamide, pimozide, and STF-62247 enhance the autophagic flux in parental MZ-54 cells, but not in ATG5 or ATG7 knockout (KO) MZ-54 cells. In addition, loperamide- and pimozide-treated cells display a massive formation of autophagosomes and autolysosomes at the ultrastructural level. Finally, stimulation of autophagy by all three compounds is accompanied by dephosphorylation of mammalian target of rapamycin complex 1 (mTORC1), a well-known negative regulator of autophagy. In summary, our results indicate that loperamide, pimozide, and STF-62247 induce ATG5- and ATG7-dependent cell death in GBM cells, which is preceded by a massive induction of autophagy. These findings emphasize the lethal function and potential clinical relevance of hyperactivated autophagy in GBM.
STF-62247 and pimozide induce autophagy and autophagic cell death in mouse embryonic fibroblasts
(2020)
Induction of autophagy can have beneficial effects in several human diseases, e.g. cancer and neurodegenerative diseases (ND). Here, we therefore evaluated the potential of two novel autophagy-inducing compounds, i.e. STF-62247 and pimozide, to stimulate autophagy as well as autophagic cell death (ACD) using mouse embryonic fibroblasts (MEFs) as a cellular model. Importantly, both STF-62247 and pimozide triggered several hallmarks of autophagy in MEFs, i.e. enhanced levels of LC3B-II protein, its accumulation at distinct cytosolic sites and increase of the autophagic flux. Intriguingly, autophagy induction by STF-62247 and pimozide resulted in cell death that was significantly reduced in ATG5- or ATG7-deficient MEFs. Consistent with ACD induction, pharmacological inhibitors of apoptosis, necroptosis or ferroptosis failed to protect MEFs from STF-62247- or pimozide-triggered cell death. Interestingly, at subtoxic concentrations, pimozide stimulated fragmentation of the mitochondrial network, degradation of mitochondrial proteins (i.e. mitofusin-2 and cytochrome c oxidase IV (COXIV)) as well as a decrease of the mitochondrial mass, indicative of autophagic degradation of mitochondria by pimozide. In conclusion, this study provides novel insights into the induction of selective autophagy as well as ACD by STF-62247 and pimozide in MEFs.
TNFR1 is a crucial regulator of NF‐ĸB‐mediated proinflammatory cell survival responses and programmed cell death (PCD). Deregulation of TNFα‐ and TNFR1‐controlled NF‐ĸB signaling underlies major diseases, like cancer, inflammation, and autoimmune diseases. Therefore, although being routinely used, antagonists of TNFα might also affect TNFR2‐mediated processes, so that alternative approaches to directly antagonize TNFR1 are beneficial. Here, we apply quantitative single‐molecule localization microscopy (SMLM) of TNFR1 in physiologic cellular settings to validate and characterize TNFR1 inhibitory substances, exemplified by the recently described TNFR1 antagonist zafirlukast. Treatment of TNFR1‐mEos2 reconstituted TNFR1/2 knockout mouse embryonic fibroblasts (MEFs) with zafirlukast inhibited both ligand‐independent preligand assembly domain (PLAD)‐mediated TNFR1 dimerization as well as TNFα‐induced TNFR1 oligomerization. In addition, zafirlukast‐mediated inhibition of TNFR1 clustering was accompanied by deregulation of acute and prolonged NF‐ĸB signaling in reconstituted TNFR1‐mEos2 MEFs and human cervical carcinoma cells. These findings reveal the necessity of PLAD‐mediated, ligand‐independent TNFR1 dimerization for NF‐ĸB activation, highlight the PLAD as central regulator of TNFα‐induced TNFR1 oligomerization, and demonstrate that TNFR1‐mEos2 MEFs can be used to investigate TNFR1‐antagonizing compounds employing single‐molecule quantification and functional NF‐ĸB assays at physiologic conditions.