Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Institute
- Pharmazie (2)
- Biochemie, Chemie und Pharmazie (1)
- Medizin (1)
Background: After focal neuronal injury the endocannabinioid system becomes activated and protects or harms neurons depending on cannabinoid derivates and receptor subtypes. Endocannabinoids (eCBs) play a central role in controlling local responses and influencing neural plasticity and survival. However, little is known about the functional relevance of eCBs in long-range projection damage as observed in stroke or spinal cord injury (SCI).
Methods: In rat organotypic entorhino-hippocampal slice cultures (OHSC) as a relevant and suitable model for investigating projection fibers in the CNS we performed perforant pathway transection (PPT) and subsequently analyzed the spatial and temporal dynamics of eCB levels. This approach allows proper distinction of responses in originating neurons (entorhinal cortex), areas of deafferentiation/anterograde axonal degeneration (dentate gyrus) and putative changes in more distant but synaptically connected subfields (cornu ammonis (CA) 1 region).
Results: Using LC-MS/MS, we measured a strong increase in arachidonoylethanolamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) levels in the denervation zone (dentate gyrus) 24 hours post lesion (hpl), whereas entorhinal cortex and CA1 region exhibited little if any changes. NAPE-PLD, responsible for biosynthesis of eCBs, was increased early, whereas FAAH, a catabolizing enzyme, was up-regulated 48hpl.
Conclusion: Neuronal damage as assessed by transection of long-range projections apparently provides a strong time-dependent and area-confined signal for de novo synthesis of eCB, presumably to restrict neuronal damage. The present data underlines the importance of activation of the eCB system in CNS pathologies and identifies a novel site-specific intrinsic regulation of eCBs after long-range projection damage.
BACKGROUND: The endocannabinoid 2-arachidonoyl glycerol (2-AG) acts as a retrograde messenger and modulates synaptic signaling e. g. in the hippocampus. 2-AG also exerts neuroprotective effects under pathological situations. To better understand the mechanism beyond physiological signaling we used Organotypic Entorhino-Hippocampal Slice Cultures (OHSC) and investigated the temporal regulation of 2-AG in different cell subsets during excitotoxic lesion and dendritic lesion of long range projections in the enthorhinal cortex (EC), dentate gyrus (DG) and the cornu ammonis region 1 (CA1).
RESULTS: 2-AG levels were elevated 24 h after excitotoxic lesion in CA1 and DG (but not EC) and 24 h after perforant pathway transection (PPT) in the DG only. After PPT diacylglycerol lipase alpha (DAGL) protein, the synthesizing enzyme of 2-AG was decreased when Dagl mRNA expression and 2-AG levels were enhanced. In contrast to DAGL, the 2-AG hydrolyzing enzyme monoacylglycerol lipase (MAGL) showed no alterations in total protein and mRNA expression after PPT in OHSC. MAGL immunoreaction underwent a redistribution after PPT and excitotoxic lesion since MAGL IR disappeared in astrocytes of lesioned OHSC. DAGL and MAGL immunoreactions were not detectable in microglia at all investigated time points. Thus, induction of the neuroprotective endocannabinoid 2-AG might be generally accomplished by down-regulation of MAGL in astrocytes after neuronal lesions.
CONCLUSION: Increase in 2-AG levels during secondary neuronal damage reflects a general neuroprotective mechanism since it occurred independently in both different lesion models. This intrinsic up-regulation of 2-AG is synergistically controlled by DAGL and MAGL in neurons and astrocytes and thus represents a protective system for neurons that is involved in dendritic reorganisation.
Endocannabinoids (eCB) are signaling lipids and became known for their importance in the central nervous system as well as in immune defense. Beneficial effects of eCB are shown in processes of excitotoxic lesion, secondary damage and neuronal plasticity throughout the last years. Two canabinoid receptors, type 1 (CB1) and type 2 (CB2) as the respective endogenous ligands belong to the endocannabinoid system (eCBS). In 1990, the CB1 could be cloned and was localised mainly on neurons. Shortly thereafter in 1993, the CB2 was characterised and found primarily on cells belonging to the immune system. N-arachidonoylethanolamide (AEA), often called anandamide, and 2-arachidonoylglycerol (2-AG) are the best characterised eCB. N-palmitylethanolamide (PEA) and N-oleoylethanolamide (OEA) have no or only low affinity to CB1 but enhance the affinity of AEA significantly. This group is therefore often summarized as N-ethanolamides (NEA). ECB are derivates of arachidonic acid and are stored in membranes where they become hydrolysed on demand by specific enzymes. Traumatic brain injury altered the levels of eCB in the blood in vivo and when applied in vitro after neuronal damage, eCB could reduce the damaging burden. Further studies demonstrated that eCB are potent to down-regulate pro-inflammatory cytokines and most important to decrease neuronal excitation.
In the present study, the intrinsic regulation of the endocannabinoid system after neuronal damage over time was investigated in rat Organotypic Hippocampal Slice Cultures (OHSC). Temporal and spatial dynamics of eCB levels were analysed after transection of the perforant pathway (PPT) in originating neurons (enthorhinal cortex, EC), areas of deafferentiation/anterograde axonal degeneration (dentate gyrus, DG) and of the synaptically linked cornu ammonis region 1 (CA1) as well as after excitotoxic lesion in the respective regions.
A strong increase of all eCB was observed only in the denervation zone of the DG 24 hours post PPT. In excitotoxic lesioned OHSC all eCB were elevated, in the investigated regions up to 72 hours post lesion (hpl). The responsible enzyme for biosynthesis of the NEA, NAPE-PLD protein, was increased during the early timepoints of measurement (1-6 hpl). The responsible catabolizing enzyme, FAAH, and the CB1 receptor were up-regulated at a later timepoint, 48 hpl, explaining the eCB levels. In the present model, the inhibition of the enzyme responsible for 2-AG hydrolysis (MAGL) was neuroprotective as previously shown and a re-distribution within neurons and astrocytes during neuronal damage could be observed. In primary cell cultures microglia expressed the regulating enzymes of 2-AG and the enzyme responsible for NEA down-regulation, FAAH. Astrocytes expressed mainly the catalyzing enzymes, indicating the role for eCB break-down. All these findings together demonstrate the great capacity of the eCBS to control inflammatory processes and consequently neuronal cell death.
All effects of the known eCB could not be clarified by CB1/CB2 deficient mice. Several G-protein coupled receptors (GPR) are recently in discussion whether they might and should belong to the endocannabinoid system. The GPR55, the not yet cloned abnormal cannabidiol receptor and further GPRs are candidates as potential endocannabinoid receptors. Recently GPR55 has been discussed as a putative cannabinoid receptor type 3 (CB3). Quantitative PCR revealed that Gpr55 is present in primary microglia and the brain, but the exact regional and cellular distribution and the physiological/pathological effects downstream of GPR55 activation in the CNS still remain open. Therefore, the excitotoxic rat OHSC model, previously used to investigate the neuroprotective potency of eCB, was now used to investigate the neuroprotective potency of GPR55. Activation of GPR55 protected dentate gyrus granule cells in vitro after excitotoxic lesion, induced by NMDA. In parallel, GPR55 activation was able to reduce the number of microglia in the dentate gyrus. These neuroprotective effects vanished however in microglia depleted OHSCs as well as in OHSC transfected with Gpr55 siRNA, indicating a strong involvement of microglia in GPR55 mediated neuroprotection.
In summary, the present study found a strong time-dependent and anterograde mechanism of action of eCB after long-range projection damage and provided further evidence for the neuroprotective properties of eCB. The potential cannabinoid receptor 3 (GPR55) mediates neuronal protection on behalf of microglia.
Background: Cannabinoid receptor 1 (CB1) is expressed in certain types of malignancies. An analysis of CB1 expression and function in Hodgkin lymphoma (HL), one of the most frequent lymphomas, was not performed to date.
Design and Methods: We examined the distribution of CB1 protein in primary cases of HL. Using lymphoma derived cell lines, the role of CB1 signaling on cell survival was investigated.
Results: A predominant expression of CB1 was found in Hodgkin-Reed-Sternberg cells in a vast majority of classical HL cases. The HL cell lines L428, L540 and KM-H2 showed strong CB1-abundance and displayed a dose-dependent decline of viability under CB1 inhibition with AM251. Further, application of AM251 led to decrease of constitutively active NFκB/p65, a crucial survival factor of HRS-cells, and was followed by elevation of apoptotic markers in HL cells.
Conclusions: The present study identifies CB1 as a feature of HL, which might serve as a potential selective target in the treatment of Hodgkin lymphoma.