Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Apoptosis (1)
- Cardiology (1)
- Long non-coding RNAs (1)
Institute
Background: The standard electrode array for the MED-EL MAESTRO cochlear implant system is 31 mm in length which allows an insertion angle of approximately 720°. When fully inserted, this long electrode array is capable of stimulating the most apical region of the cochlea. No investigation has explored Electrically Evoked Compound Action Potential (ECAP) recordings in this region with a large number of subjects using a commercially available cochlear implant system. The aim of this study is to determine if certain properties of ECAP recordings vary, depending on the stimulation site in the cochlea. Methods: Recordings of auditory nerve responses were conducted in 67 subjects to demonstrate the feasibility of ECAP recordings using the Auditory Nerve Response Telemetry (ART™) feature of the MED-EL MAESTRO system software. These recordings were then analyzed based on the site of cochlear stimulation defined as basal, middle and apical to determine if the amplitude, threshold and slope of the amplitude growth function and the refractory time differs depending on the region of stimulation. Results: Findings show significant differences in the ECAP recordings depending on the stimulation site. Comparing the apical with the basal region, on average higher amplitudes, lower thresholds and steeper slopes of the amplitude growth function have been observed. The refractory time shows an overall dependence on cochlear region; however post-hoc tests showed no significant effect between individual regions. Conclusions :Obtaining ECAP recordings is also possible in the most apical region of the cochlea. However, differences can be observed depending on the region of the cochlea stimulated. Specifically, significant higher ECAP amplitude, lower thresholds and steeper amplitude growth function slopes have been observed in the apical region. These differences could be explained by the location of the stimulating electrode with respect to the neural tissue in the cochlea, a higher density, or an increased neural survival rate of neural tissue in the apex. Trial registration: The Clinical Investigation has the Competent Authority registration number DE/CA126/AP4/3332/18/05.
Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties, and spatiotemporal distribution in the atmosphere are not yet well characterized. In the Amazon Basin, primary biological aerosol particles (PBAPs) account for a large fraction of coarse particulate matter, and fungal spores are among the most abundant PBAPs in this area as well as in other vegetated continental regions. Furthermore, PBAPs could also be important ice nuclei in Amazonia. Measurement data on the release of fungal spores under natural conditions, however, are sparse. Here we present an experimental approach to analyze and quantify the spore release from fungi and other spore-producing organisms under natural and laboratory conditions. For measurements under natural conditions, the samples were kept in their natural environment and a setup was developed to estimate the spore release numbers and sizes as well as the microclimatic factors temperature and air humidity in parallel to the mesoclimatic parameters net radiation, rain, and fog occurrence. For experiments in the laboratory, we developed a cuvette to assess the particle size and number of newly released fungal spores under controlled conditions, simultaneously measuring temperature and relative humidity inside the cuvette. Both approaches were combined with bioaerosol sampling techniques to characterize the released particles using microscopic methods. For fruiting bodies of the basidiomycetous species, Rigidoporus microporus, the model species for which these techniques were tested, the highest frequency of spore release occurred in the range from 62 % to 96 % relative humidity. The results obtained for this model species reveal characteristic spore release patterns linked to environmental or experimental conditions, indicating that the moisture status of the sample may be a regulating factor, whereas temperature and light seem to play a minor role for this species. The presented approach enables systematic studies aimed at the quantification and validation of spore emission rates and inventories, which can be applied to a regional mapping of cryptogamic organisms under given environmental conditions.
Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties and spatiotemporal distribution in the atmosphere are not yet well characterized. In the Amazon Basin, primary biological aerosol particles (PBAP) account for a large fraction of coarse particulate matter, and fungal spores are among the most abundant PBAP there as well as in other vegetated continental regions. furthermore, PBAP could also be important ice nuclei in Amazonia. Measurement data on the release of fungal spores under natural conditions, however, are sparse. Here we present an experimental approach to analyze and quantify the spore release from fungi and other spore producing organisms under natural and laboratory conditions. For measurements under natural conditions, the samples were kept in their natural environment and a setup was developed to estimate the spore release numbers and sizes together with the microclimatic factors temperature and air humidity, as well as the mesoclimatic parameters net radiation, rain, and fog occurrence. For experiments in the laboratory, we developed a cuvette to assess the particle size and number of newly released fungal spores under controlled conditions, simultaneously measuring temperature and relative humidity inside the cuvette. Both approaches were combined with bioaerosol sampling techniques to characterize the released particles by microscopic methods. For fruiting bodies of the basidiomycetous species, Rigidoporus microporus, the model species for which these techniques were tested, the highest frequency of spore release occurred in the range of 62 and 96 % relative humidity. The results obtained for this model species reveal characteristic spore release patterns linked to environmental or experimental conditions, indicating that the moisture status of the sample may be a regulating factor, while temperature and light seem to play a minor role for this species. The presented approach enables systematic studies aimed at the quantification and validation of spore emission rates and inventories, which can be applied to a regional mapping of cryptogamic organisms under given environmental conditions.
Im Kontext wirtschaftlicher Entwicklungsbemühungen läßt sich mit dem Auftreten von Währungskrisen in den Emerging Markets in den 90er Jahren ein deutlich zu Tage tretender struktureller Wandel erkennen. Kennzeichnend für diese Entwicklung waren zum einen eine zunehmende Vulnerabilität der Volkswirtschaften und zum anderen eine steigende Volatilität internationaler Finanzanlagen. Diesen Phänomenen lagen im wesentlichen zwei Faktoren zu Grunde. Erstens waren die Währungssysteme, die in den 80er Jahren als Mittel der Inflationsbekämpfung und der wirtschaftlichen Stabilisierung etabliert wurden, aufgrund systeminhärenter Probleme und einer fortschreitenden Integration in die internationalen Finanz- und Kapitalmärkte den neuen Herausforderungen nicht mehr gewachsen. Zweitens führte die Öffnung der Kapitalmärkte in Verbindung mit einer weitreichenden Liberalisierung, Deregulierung und Privatisierung zu neuen Formen investiven privaten Kapitals, daß grundlegend anderen Investitionsentscheidungen unterlag als noch die Kapitalzuflüsse der 80er Jahre. Beide Faktoren führten im Verlauf der 90er Jahre zu einer Reihe spekulativer Währungsattacken in den Emerging Markets und einem grundlegenden Wandel in der Währungspolitik dieser Länder. Dieser Prozess ist auch in der heutigen Zeit noch nicht abgeschlossen. Somit können die Krisenszenarien der 90er Jahre auch als logische Konsequenz und Ausdruck einer notwendigen und teilweise überfälligen Reaktion auf strukturelle Veränderungen gewertet werden. In der vorliegenden Arbeit wird dieser Prozeß anhand der Erfahrungen Mexikos und der Pesokrise von 1994, die oftmals als erste Finanzkrise des 21. Jahrhunderts bezeichnet wurde, nachvollzogen und unter Berücksichtigung nachfolgender Krisenszenarien in Asien, Rußland und Brasilien bewertet.
Long non-coding RNAs (lncRNAs) contribute to cardiac (patho)physiology. Aging is the major risk factor for cardiovascular disease with cardiomyocyte apoptosis as one underlying cause. Here, we report the identification of the aging-regulated lncRNA Sarrah (ENSMUST00000140003) that is anti-apoptotic in cardiomyocytes. Importantly, loss of SARRAH (OXCT1-AS1) in human engineered heart tissue results in impaired contractile force development. SARRAH directly binds to the promoters of genes downregulated after SARRAH silencing via RNA-DNA triple helix formation and cardiomyocytes lacking the triple helix forming domain of Sarrah show an increase in apoptosis. One of the direct SARRAH targets is NRF2, and restoration of NRF2 levels after SARRAH silencing partially rescues the reduction in cell viability. Overexpression of Sarrah in mice shows better recovery of cardiac contractile function after AMI compared to control mice. In summary, we identified the anti-apoptotic evolutionary conserved lncRNA Sarrah, which is downregulated by aging, as a regulator of cardiomyocyte survival.