Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
- Preprint (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Biochemie und Chemie (2)
- Georg-Speyer-Haus (1)
- MPI für Biophysik (1)
- Physik (1)
The carnitine transporter CaiT from Escherichia coli belongs to the betaine, choline, and carnitine transporter family of secondary transporters. It acts as an L-carnitine/gamma-butyrobetaine exchanger and is predicted to span the membrane 12 times. Unlike the other members of this transporter family, it does not require an ion gradient and does not respond to osmotic stress (Jung, H., Buchholz, M., Clausen, J., Nietschke, M., Revermann, A., Schmid, R., and Jung, K. (2002) J. Biol. Chem. 277, 39251-39258). The structure and oligomeric state of the protein was examined in detergent and in lipid bilayers. Blue native gel electrophoresis indicated that CaiT was a trimer in detergent solution. This result was further supported by gel filtration and cross-linking studies. Electron microscopy and single particle analysis of the protein showed a triangular structure of three masses or two parallel elongated densities. Reconstitution of CaiT into lipid bilayers yielded two-dimensional crystals that indicated that CaiT was a trimer in the membrane, similar to its homologue BetP. The implications of the trimeric structure on the function of CaiT are discussed.
Glutamat ist der häufigste Neurotransmitter im menschlichen Hirn. Die Konzentration des Glutamats in der extrazellulären Flüssigkeit wird durch Glutamat-Transporter (Sekundärtransporter) kontrolliert. Liegt es in zu hoher Konzentration im synaptischen Spalt vor, kommt es zur Schädigung von Nervenzellen, ein Prozess, der als Exzitotoxizität bezeichnet wird. Eine Fehlfunktion oder fehlerhafte Produktion der Glutamat-Transporter im zentralen Nervensystem wird bei verschiedenen Krankheiten, wie der amyotrophen Lateralsklerose, der Ischämie, der Epilepsie, der Schizophrenie und der Alzheimer-Krankheit vermutet. Ziel dieser Arbeit war die Funktions- und Strukturanalyse der Glutamat-Transporter GLT-1 aus Rattus norvegicus und GltP aus E. coli, um die Familie der Glutamat-Transporter und die Entstehung der mit diesen Transportern in Verbindung gebrachten Krankheiten besser zu verstehen. Um die für diese Analysen gebrauchten Mengen an Protein herzustellen, mussten die Proteine heterolog produziert werden, da sie in natürlichen Geweben nicht in ausreichender Menge vorkommen. In dieser Arbeit wurde Glutamat-Transporter GLT-1 aus Rattus norvegicus funktional mit dem Semliki Forest Virus Expressionssystem überproduziert. Dazu wurden verschiedene Vektorkonstrukte hergestellt. Die routinemäßige Überproduktion des Transporters wurde im 8 l - Maßstab durchgeführt. In Zellen, die für die Produktion von GLT-1 mit rekombinanten, aktiven SF-Viren infiziert wurden, konnte eine sehr hohe Aktivität des Glutamat-Transporters nachgewiesen werden. Die Menge des hergestellten GLT-1 wurde in Bindungsexperimenten mit (2S,4R)-4-Methylglutamat quantifiziert: jede Zelle enthielt 3,5 x 106 Transporter: 61,04 pmol GLT-1/mg Gesamtprotein. Das entspricht einer Ausbeute von etwa 2-3 mg/8 l Zellkultur. Die hier durchgeführte Überproduktion des GLT-1-Glutamat-Transporters ist die erste Überproduktion eines eukaryotischen Sekundärtransporters mit dem Semliki Forest Virus Expressionssystem, bei dem große Mengen an aktivem Protein hergestellt werden konnten. Zudem ist die Ausbeute an funktionalem GLT-1 mit 61 pmol/mg Gesamtprotein verglichen mit den in der Literatur vorliegenden Daten zur Überproduktion eukaryotischer sekundärer Transporter mit anderen Expressionssystemen die höchste, die bis dato erreicht werden konnte. Der größte Anteil des heterolog produzierten GLT-1 war glykosyliert. Die gelelektrophoretische Analyse des aufgereinigten Transporters ergab zwei Banden, die ein apparentes Molekulargewicht von etwa 70-75 kDa und etwa 53-58 kDa hatten. In einer Western-Blot-Analyse konnten beide Banden des GLT-1-Transporters mit einem anti-His-Antikörper und einem anti-GLT-1-Antikörper nachgewiesen werden. Durch Deglykosylierung mit PNGase F und einer Trennung beider Banden durch Lektin-Affinitätschromatographie konnte gezeigt werden, dass es sich bei der 70-75 kDa-Bande um die glykosylierte Form und bei der 53-58 kDa-Bande um die nicht glykosylierte Form des Glutamat-Transporters handelte. Es wurde gezeigt, dass zwischen der Aktivität des GLT-1 und dessen Glykosylierung kein Zusammenhang besteht. Denn beide Formen lagen als vollständige, funktionale Transporter vor und transportierten nach Rekonstitution in Liposomen Glutamat. Der prokaryotische Glutamat-Transporter GltP aus E. coli wurde in dem E. coli-Stamm C43 (DE3) überproduziert. Die Ausbeute war etwa 2 mg pro Liter Kultur. Die Funktionalität des Transporters nach Rekonstitution in Lipidvesikel wurde durch spezifische Aufnahme von Glutamat gezeigt. Für die Solubilisierung beider Transporter aus den Zellmembranen wurden verschiedene Detergentien getestet. GltP ließ sich am besten mit DM oder DDM aus der Membran extrahieren, für die Solubilisierung des GLT-1 wurde mit großer Effizienz DDM oder CYMAL-7 eingesetzt. GltP und GLT-1 wurden mit einer Ni2+-NTA-Affinitätschromatographie in großer Menge und hoher Reinheit angereichert werden. Die Aufreinigungsprozedur beeinträchtigte nicht die Funktionalität des prokaryotischen GltP. Bei dem eukaryotischen Transporter GLT-1 war nach der Ni2+-NTA-Säule keine Transportaktivität mehr messbar. Durch Zusatz von Asolectin in den Wasch- und Elutionspuffern während der Aufreinigung konnte die Funktionalität des Transporters jedoch erhalten werden. Aufreinigungen mit anderen Lipiden unter anderem in Kombination mit Cholesterin lieferten einen Glutamat-Transporter, der in seiner Konformation stabilisiert, jedoch nach Rekonstitution nicht aktiv war. Eine weitere Steigerung der Ausbeute an aktivem GLT-1 konnte durch den Einsatz von Reduktionsmitteln, wie DTT oder b-Mercaptoethanol, die die Aggregation des Transporters verhinderten, erreicht werden. GltP katalysiert den elektrogenen Transport von Glutamat bzw. Aspartat unter Symport von mindestens zwei Protonen. GLT-1 transportiert ein Molekül Glutamat zusammen mit drei Na+-Ionen und einem Proton im Austausch gegen ein K+-Ion. Durch Transportmessungen konnte der hochspezifische Glutamat-Transport der aufgereinigten Transporter belegt werden. Der Glutamat-Transport des in Liposomen rekonstituierten GltP zeigte eine klare Abhängigkeit von einem anliegenden Protonengradienten. Aufgereinigtes und rekonstituiertes GLT-1 transportierte nur Aspartat bzw. Glutamat, wenn ein Na+ und ein K+-Gradient vorhanden waren. Die Aspartat- bzw. Glutamat-Aufnahme konnte bei beiden Transportern durch den kompetitiven nichttransportablen Inhibitor (2S,4R)-4-Methylglutamat blockiert werden. Der Assoziationsgrad der Glutamat-Transporter GltP und GLT-1 und das Gleichwicht zwischen den verschiedenen oligomeren Zuständen wurde in dieser Arbeit eingehend mit biochemischen Methoden untersucht: 1. „Cross-linking“-Studien, 2. Blaue Nativgelelektrophorese, 3. Analytische Ultrazentrifugation, 4. Laserlichtstreuung, 5. Gelfiltrationschromatographie. Die dabei erhaltenen Ergebnisse bewiesen eine tetramere Assoziierung beider Proteine. Die Gelfiltrationsexperimente zeigten, dass die Transporter in Detergenzlösung in unterschiedlichen Assoziationsgraden vorliegen. Das Gleichgewicht zwischen den oligomeren Formen war reversibel und abhängig von der Art und Konzentration des Detergenz, der Proteinkonzentration und der Temperatur. Zur Untersuchung der Struktur der Glutamat-Transporter wurden vor allem mit GltP zahlreiche 2D-Kristallisationsexperimente durchgeführt. Trotz Variation aller denkbar möglichen Parameter konnten keine Kristalle erhalten werden. Das beste Ergebnis war ein guter Einbau des Proteins in Lipidvesikel (etwa 80%). Da keine Kristalle erhalten wurden, wurde für beide Proteine eine Einzelpartikelanalyse durchgeführt. Dabei wurde nach zweidimensionaler Alignierung und Klassifizierung die „random conical tilt“-Methode angewendet. Die daraus resultierenden dreidimensionalen Dichtekarten des GltP und GLT-1 waren sehr ähnlich und wiesen vier nicht exakt symmetrische Massen in annähernd quadratischer Anordnung auf. Die Auflösung war 26 Å bzw. 36 Å. Die Größe der Einzelpartikel (für GltP: Höhe 37 Å, Breite 75 Å bzw. 86 Å, Länge 100 Å). ihre annähernd quadratische Anordnung und ihre Symmetrie lassen vermuten, dass es sich dabei um Tetramere der Glutamat-Transporter handelt, die aus zwei nicht symmetrischen Dimeren zusammengesetzt sind. Die hier präsentierten Daten sind die ersten zur dreidimensionalen Struktur von Glutamat-Transportern. Schließlich wurde nachgewiesen, dass der in BHK-Zellen heterolog exprimierte Glutamat-Transporter GLT-1 vorwiegend in „lipid rafts“ lokalisiert ist. Die Größe der „rafts“, die anhand der Größe der „Proteininseln“ in Gefrierbrüchen bestimmt wurde, war etwa 200 nm im Durchmesser. Die „GLT-1-Inseln“ bzw. „lipid rafts“ konnten durch das teilweise Entfernen von Cholesterin aus der Membran zerstört werden. Damit ging eine Reduktion der Glutamat-Transporter-Aktivität von etwa 20% einher. Es ist das erste Mal, dass „lipid rafts“ durch die natürliche Assemblierung von Proteinen mit Hilfe von Gefrierbruchanalysen und Elektronenmikroskopie beobachtet wurden.
Molecular mechanisms of inorganic-phosphate release from the core and barbed end of actin filaments
(2023)
The release of inorganic phosphate (Pi) from actin filaments constitutes a key step in their regulated turnover, which is fundamental to many cellular functions. However, the molecular mechanisms underlying Pi release from both the core and barbed end of actin filaments remain unclear. Here, we combine cryo-EM with molecular dynamics simulations and in vitro reconstitution to demonstrate how actin releases Pi through a ‘molecular backdoor’. While constantly open at the barbed end, the backdoor is predominantly closed in filament-core subunits and only opens transiently through concerted backbone movements and rotameric rearrangements of residues close to the nucleotide binding pocket. This mechanism explains why Pi escapes rapidly from the filament end and yet slowly from internal actin subunits. In an actin variant associated with nemaline myopathy, the backdoor is predominantly open in filament-core subunits, resulting in greatly accelerated Pi release after polymerization and filaments with drastically shortened ADP-Pi caps. This demonstrates that the Pi release rate from F-actin is controlled by steric hindrance through the backdoor rather than by the disruption of the ionic bond between Pi and Mg2+ at the nucleotide-binding site. Our results provide the molecular basis for Pi release from actin and exemplify how a single, disease-linked point mutation distorts the nucleotide state distribution and atomic structure of the actin filament.