Refine
Year of publication
- 2015 (2)
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- anti-angiogenic therapy (1)
- glioblastoma (1)
- macrophage polarization (1)
- therapy resistance (1)
- tumor angiogenesis (1)
Institute
- Biowissenschaften (1)
- Medizin (1)
The brain vascular system is composed of specialized endothelial cells, which regulate the movement of ions, molecules and cells from the blood lumen to the central nervous system (CNS). Endothelial cells in the brain form the blood-brain barrier (BBB) that is essential to maintain the brain homeostasis and protect the CNS from pathogens and toxins for a proper neurological function. Endothelium together with other cellular components such as pericytes, astrocytes and the basement membrane, forms the neurovascular unit (NVU), the structural unit of the BBB. Breakdown of the BBB occurs in various neurological disorders, leading to edema and neuronal damage. Therapeutic strategies focusing on factors that regulate the permeability of the BBB may help to improve neurological disorders and facilitate drug delivery to the brain.
Angiopoietins (Ang) are potential candidates for therapeutic targeting the BBB due to their role in regulating the vascular permeability in periphery. They are key growth factors that control angiogenesis and vessel maturation. Ang-1 and Ang-2 possess similar binding affinities to the Tie2 receptor tyrosine kinase, which is almost exclusively expressed on endothelial cells. Ang-1 is expressed in smooth muscle cells and pericytes, and binds in a paracrine manner to Tie2. This results in phosphorylation of the receptor and induction of downstream signaling pathways leading to vessel maturation via pericyte recruitment and blood vessel stabilization. Ang-2, on the other hand, is stored in Weibel Palade bodies in endothelial cells and is released upon inflammatory or angiogenic stimuli. Therefore, in mature, stabilized blood vessels, Ang-2 expression is low. Increased level of Ang-2 is only observed during development or in pathology such as ischemia, cancer and inflammation. When Ang-2 is released, it acts in an autocrine manner and interferes with Tie2 phosphorylation in a context-dependent way. Antagonizing the receptor results in de-stabilization of the vessels, often accompanied by reduced numbers of pericytes leading to myeloid cell infiltration. In conjunction with the vascular endothelial growth factor (VEGF), Ang-2 contributes to blood vessel sprouting, whereupon in absence of VEGF it promotes vessel regression. ...
Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti‐angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin‐2 (Ang‐2) as a potential target in both naive and bevacizumab‐treated glioblastoma. Ang‐2 expression was absent in normal human brain endothelium, while the highest Ang‐2 levels were observed in bevacizumab‐treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang‐2, whereas the combined inhibition of VEGF and Ang‐2 leads to extended survival, decreased vascular permeability, depletion of tumor‐associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206+ (M2‐like) macrophages were identified as potential novel targets following anti‐angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang‐2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang‐2 may potentially overcome resistance to bevacizumab therapy.