Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
Im Rahmen der vorliegenden Arbeit wurden konformationelle und strukturelle Eigenschaften Biomolekülen Hilfe NMRspektroskopischen und biochemischen Methoden, sowie Synthese Liganden untersucht. Kapitel wurde das Verhalten beiden Hauptkonformere des Dolastatin Gegenwart Tubulin untersucht. wurden sechs neuartige Dolastatin 10Derivate synthetisiert, welche TubulinPolymerisation unterschiedlich inhibieren. Das Protein Tubulin wurde sowohl die vitroBindungsstudien auch für NMR spektroskopischen Experimente isoliert. Verbindungen 35b repräsentieren jeweils und das transKonformer des Dolastatin 10, wobei erstere einen stärke inhibitorischen Effekt der TubulinPolymerisation das lineare Dolastatin Derivat zeigte. Daraus kann man schließen, cisKonformation Dola statin Inhibition der TubulinPolymerisation verantwortlich ist. Durch diese neue Erkenntnis können Dolastatin 10Derivate, welche dem cisKonformer Dolastatin entsprechen, synthetisiert werden und potentielle Krebstherapeutika Anwendung finden. einem zweiten Ansatz wurde das Nmarkierte lineare Dolastatin 10Derivat heteronuclearen zweidimensionalen NMRExperimenten in Gegenwart von DEAE MAPTubulin untersucht. Durch Bestimmung der Korrelationszeiten Konformer Verbindung Gegenwart DEAE und MAPTubulin den beiden Dimensionen gekoppelten 1 H 15 NHSQCSpektren konnte gezeigt werden, cisKonformer von schnellen Austausch gebundenen Form befindet. Gegenwart DEAETubulin stellt man einen erhöhten cisGehalt von fest, welcher auf eine schwache Bindung des Liganden hindeutet. Falle MAP Tubulins der Anteil cisKonformers von Vergleich freien Verbin dung nahezu unverändert. Durch erhöhte Korrelationszeit des cisKonformers Gegenwart von MAPTubulin kann man eine zusätzliche Wechselwirkung mit MAPs annehmen, welche eventuell Bindung betaUntereinheit des Tubulins verstärkt. Außerdem könnte die Wechselwirkung der MAPs mit dem Tubulin durch den Liganden gestört werden. Bei den entsprechenden Messungen mit Cmarkiertem Colchicin in Gegenwart DEAE und MAPTubulin konnte ebenfalls schneller Austausch Liganden gebundenen Form nachgewiesen werden. Hierbei wurde aber kein unterschiedliches Verhalten bei beiden TubulinSorten festgestellt. Die Bindungsstelle Colchicin betaUntereinheit Tubulins unterscheidet sich der Dola statin (Abb. 2.12). Deshalb kann man zusätzliche Wechselwirkungen MAPs ausschließen. Versuche zum Einsatz Vanadat Übergangszustandanalogon Phosphat Spaltreaktion des Hammerhead Ribozyms wurden in Kapitel beschrieben. Zunächst wurden experimentellen Rahmenbedingungen Komplexbildung Vanadat 1,2cisDiolen der Ribose einfachen Nucleosiden und Nucleotiden getestet. konnte gezeigt werden, daß freie Phosphatgruppen Komplexierung Vanadats dem 1,2cisDiol Ribose verhindern. Allerdings stört die Anwesenheit Phosphosäurediestern nicht gewünschte Komplexbildung. Diese Erkenntnisse wurden bei verschiedenen RNAKonstrukten Hammerhead Ribozyms berück sichtigt. Durch Einführung von desoxyRibose den 3'terminalen Nucleosiden konnte Komplexbildung Vanadat den Fällen beobachtet werden, denen erwarten war, wenn sich das Vanadat anstelle Phosphates nach dem A17 Hammerhead Ribozym befindet. konnte gezeigt werden, daß Vanadat Über gangszustandsanalogon Phosphat bei Spaltung Hammerhead Ribozyms gesetzt werden könnte. Bestimmung dreidimensionalen Struktur des Membranproteins Phospholamban CDCl 3 /CD 3 wurde Kapitel 4 beschrieben. Hierbei wurden homo nuclearen zweidimensionalen Spektren gewonnenen Abstandsinformationen NOE Daten Dihedralwinkel aus Kopplungskonstanten verwendet, die Struktur Phospholambans Lösung zu gewinnen. Phospholamban besteht aus zwei alphahelikalen Regionen (Val4Ser16 und Pro21Val49), die über einen betaturn (Typ verbunden sind. Die turnRegion weist eine hohe Flexibilität auf, welche wichtig seine biolo gische Wirkung sein könnte. So könnte hier Annäherung von Enzymen Proteinkinasen oder der ATPase erleichtert werden.
Ribosomal RNA undergoes various modifications to optimize ribosomal structure and expand the topological potential of RNA. The most common nucleotide modifications in ribosomal RNA (rRNA) are pseudouridylations and 2'-O methylations (Nm), performed by H/ACA box snoRNAs and C/D box snoRNAs, respectively. Furthermore, rRNAs of both ribosomal subunits also contain various base modifications, which are catalysed by specific enzymes. These modifications cluster in highly conserved areas of the ribosome. Although most enzymes catalysing 18S rRNA base modifications have been identified, little is known about the 25S rRNA base modifications. The m(1)A modification at position 645 in Helix 25.1 is highly conserved in eukaryotes. Helix formation in this region of the 25S rRNA might be a prerequisite for a correct topological framework for 5.8S rRNA to interact with 25S rRNA. Surprisingly, we have identified ribosomal RNA processing protein 8 (Rrp8), a nucleolar Rossman-fold like methyltransferase, to carry out the m(1)A base modification at position 645, although Rrp8 was previously shown to be involved in A2 cleavage and 40S biogenesis. In addition, we were able to identify specific point mutations in Rrp8, which show that a reduced S-adenosyl-methionine binding influences the quality of the 60S subunit. This highlights the dual functionality of Rrp8 in the biogenesis of both subunits.