Refine
Language
- English (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- heavy ion collisions (5)
- Kollisionen schwerer Ionen (4)
- Drell-Yan (3)
- UrQMD (3)
- coronavirus (3)
- Molekulare Dynamik (2)
- Ultrarelativistic Quantum Molecular Dynamics (2)
- ultrarelativistisch (2)
- Absorption (1)
- COVID-19 (1)
Institute
- Physik (6)
- Geowissenschaften (2)
- Geowissenschaften / Geographie (2)
- Medizin (2)
- Psychologie und Sportwissenschaften (2)
We study J/psi suppression in AB collisions assuming that the charmonium states evolve from small, color transparent configurations. Their interaction with nucleons and nonequilibrated, secondary hadrons is simulated using the microscopic model UrQMD. The Drell-Yan lepton pair yield and the J/psi Drell-Yan ratio are calculated as a function of the neutral transverse energy in Pb+Pb collisions at 160 GeV and found to be in reasonable agreement with existing data.
We study J/psi suppression in AB collisions assuming that the charmonium states evolve from small, color transparent configurations. Their interaction with nucleons and nonequilibrated, secondary hadrons is simulated us- ing the microscopic model UrQMD. The Drell-Yan lepton pair yield and the J/psi /Drell-Yan ratio are calculated as a function of the neutral transverse en- ergy in Pb+Pb collisions at 160 GeV and found to be in reasonable agreement with existing data.
Confinement measures during the COVID-19 pandemic have caused substantial reductions in global physical activity (PA) levels. In view of the manifold health benefits of PA, the development of interventions counteracting this trend is paramount. Our survey with 15,261 participants (38 ± 15 years, 58.5% females) examined preferences towards digital home exercise programs in 14 countries affected by COVID-19. More than two-thirds of the sample (68.4%, n = 10,433) indicated being interested in home exercise, and most participants were willing to work out at least three times per week (89.3%, n = 9328). Binary logistic regression revealed that female sex, working part-time, younger age, and being registered in a gym were associated with willingness to exercise. Flexibility (71.1%, n = 7377), resistance (68.6%, n = 7116), and endurance training (62.4%, n = 6478) were the most preferred types of exercise. Our results may guide health providers in developing individually tailored PA interventions during the current and future pandemics.
Most countries affected by the COVID-19 pandemic have repeatedly restricted public life to control the contagion. However, the health impact of confinement measures is hitherto unclear. We performed a multinational survey investigating changes in mental and physical well-being (MWB/PWB) during the first wave of the pandemic. A total of 14,975 individuals from 14 countries provided valid responses. Compared to pre-restrictions, MWB, as measured by the WHO-5 questionnaire, decreased considerably during restrictions (68.1 ± 16.9 to 51.9 ± 21.0 points). Whereas 14.2% of the participants met the cutoff for depression screening pre-restrictions, this share tripled to 45.2% during restrictions. Factors associated with clinically relevant decreases in MWB were female sex (odds ratio/OR = 1.20, 95% CI: 1.11–1.29), high physical activity levels pre-restrictions (OR = 1.29, 95% CI 1.16–1.42), decreased vigorous physical activity during restrictions (OR = 1.14, 95% CI: 1.05–1.23), and working (partially) outside the home vs. working remotely (OR = 1.29, 95% CI: 1.16–1.44/OR = 1.35, 95% CI: 1.23–1.47). Reductions, although smaller, were also seen for PWB. Scores in the SF-36 bodily pain subscale decreased from 85.8 ± 18.7% pre-restrictions to 81.3 ± 21.9% during restrictions. Clinically relevant decrements of PWB were associated with female sex (OR = 1.62, 95% CI: 1.50–1.75), high levels of public life restrictions (OR = 1.26, 95% CI: 1.18–1.36), and young age (OR = 1.10, 95% CI: 1.03–1.19). Study findings suggest lockdowns instituted during the COVID-19 pandemic may have had substantial adverse public health effects. The development of interventions mitigating losses in MWB and PWB is, thus, paramount when preparing for forthcoming waves of COVID-19 or future public life restrictions.
Dissociation rates of J / psi's with comoving mesons : thermal versus nonequilibrium scenario.
(1998)
We study J/psi dissociation processes in hadronic environments. The validity of a thermal meson gas ansatz is tested by confronting it with an alternative, nonequilibrium scenario. Heavy ion collisions are simulated in the frame- work of the microscopic transport model UrQMD, taking into account the production of charmonium states through hard parton-parton interactions and subsequent rescattering with hadrons. The thermal gas and microscopic transport scenarios are shown to be very dissimilar. Estimates of J/psi survival probabilities based on thermal models of comover interactions in heavy ion collisions are therefore not reliable.
A study of secondary Drell-Yan production in nuclear collisions is presented for SPS energies. In addition to the lepton pairs produced in the initial collisions of the projectile and target nucleons, we consider the potentially high dilepton yield from hard valence antiquarks in produced mesons and antibaryons. We calculate the secondary Drell-Yan contributions taking the collision spectrum of hadrons from the microscopic model URQMD. The con- tributions from meson-baryon interactions, small in hadron-nucleus interac- tions, are found to be substantial in nucleus-nucleus collisions at low dilepton masses. Preresonance collisions of partons may further increase the yields.
Charmonium production and absorption in heavy ion collisions is studied with the Ultrarelativisitic Quantum Molecular Dynamics model. We compare the scenario of universal and time independent color-octet dissociation cross sections with one of distinct color-singlet J/psi, psi 2 and CHIc states, evolving from small, color transparent configurations to their asymptotic sizes. The measured J/psi production cross sections in pA and AB collisions at SPS energies are consistent with both purely hadronic scenarios. The predicted rapidity dependence of J/psi suppression can be used to discriminate between the two experimentally. The importance of interactions with secondary hadrons and the applicability of thermal reaction kinetics to J/psi absorption are in- vestigated. We discuss the e ect of nuclear stopping and the role of leading hadrons. The dependence of the 2/J/psi ratio on the model assumptions and the possible influence of refeeding processes is also studied.
Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the CLOUD experiment at CERN, we deployed a new in-situ optical method to detect the viscosity of α-pinene SOA particles and measured their transition from the amorphous viscous to liquid state. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical liquid particles during deliquescence. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to spherical shape was observed as the RH was increased to between 35 % at −10 ◦C and 80 % at −38 ◦C, confirming previous calculations of the viscosity transition conditions. Consequently, α-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.
Background: Hypothermia has been discussed as playing a role in improving the early phase of systemic inflammation. However, information on the impact of hypothermia on the local inflammatory response is sparse. We therefore investigated the kinetics of local and systemic inflammation in the late posttraumatic phase after induction of hypothermia in an established porcine long-term model of combined trauma.
Materials & Methods: Male pigs (35 ± 5kg) were mechanically ventilated and monitored over the study period of 48 h. Combined trauma included tibia fracture, lung contusion, liver laceration and pressure-controlled hemorrhagic shock (MAP < 30 ± 5 mmHg for 90 min). After resuscitation, hypothermia (33°C) was induced for a period of 12 h (HT-T group) with subsequent re-warming over a period of 10 h. The NT-T group was kept normothermic. Systemic and local (fracture hematoma) cytokine levels (IL-6, -8, -10) and alarmins (HMGB1, HSP70) were measured via ELISA.
Results: Severe signs of shock as well as systemic and local increases of pro-inflammatory mediators were observed in both trauma groups. In general the local increase of pro- and anti-inflammatory mediator levels was significantly higher and prolonged compared to systemic concentrations. Induction of hypothermia resulted in a significantly prolonged elevation of both systemic and local HMGB1 levels at 48 h compared to the NT-T group. Correspondingly, local IL-6 levels demonstrated a significantly prolonged increase in the HT-T group at 48 h.
Conclusion: A prolonged inflammatory response might reduce the well-described protective effects on organ and immune function observed in the early phase after hypothermia induction. Furthermore, local immune response also seems to be affected. Future studies should aim to investigate the use of therapeutic hypothermia at different degrees and duration of application.