Refine
Document Type
- Article (7)
- Conference Proceeding (1)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- Autism spectrum disorder (1)
- Bacteria-host interaction (1)
- Bacterial adhesion (1)
- Computerlinguistik (1)
- Endothelium (1)
- Extracellular matrix (1)
- Fibronectin (1)
- Grammatik (1)
- Moderating factors (1)
- Neural function (1)
Background: We aimed to investigate the influences of attention deficit/hyperactivity disorder (ADHD) on response evaluation, as reflected by the postimperative negative variation (PINV), a slow event-related potential. Methods: We investigated PINV as an indicator of performance uncertainty in an audio-visual contingent negative variation (CNV) paradigm with an interstimulus interval of 3 seconds. A constant, unilateral, quick motor reaction with either the right or the left thumb was required after an auditory forewarned (S1) visual imperative stimulus (S2). We examined 18 ADHD patients (combined or hyperactive-impulsive subtype) aged between 8 and 14 years and an age-, sex and IQ-matched control group of 19 healthy subjects using 64-channel high-density EEG. A first run was recorded drug-free, a second one under methylphenidate (MPH) medication in the ADHD group. Results: We found a significantly increased negativity of the PINV-component over the ventrolateral prefrontal cortex in ADHD children compared to the healthy control group. PINV amplitude was influenced by movement side, most likely due to the slightly more difficult task when left hand responses were required. After the intake of MPH, PINV amplitudes of ADHD children normalized. Conclusions: We conclude that children with ADHD are likely to be more uncertain about the correctness of their performance and interpret the increased PINV as a hint towards compensatory mechanisms for a deficit in the evaluation of contingencies. Further studies are needed to assess the exact extent to which remainders of eye-movement related potentials contribute to PINV amplitude despite the correction for eye-artifacts.
Background: Dopamine plays an important role in orienting, response anticipation and movement evaluation. Thus, we examined the influence of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of motor processing in a contingent negative variation (CNV) task.
Methods: 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as motor postimperative negative variation were assessed. Adolescents were genotyped for the COMT Val158Met and two DAT1 polymorphisms (variable number tandem repeats in the 3′-untranslated region and in intron 8).
Results: The results revealed a significant interaction between COMT and DAT1, indicating that COMT exerted stronger effects on lateralized motor post-processing (centro-parietal motor postimperative negative variation) in homozygous carriers of a DAT1 haplotype increasing DAT1 expression. Source analysis showed that the time interval 500–1000 ms after the motor response was specifically affected in contrast to preceding movement anticipation and programming stages, which were not altered.
Conclusions: Motor slow negative waves allow the genomic imaging of dopamine inactivation effects on cortical motor post-processing during response evaluation. This is the first report to point towards epistatic effects in the motor system during response evaluation, i.e. during the post-processing of an already executed movement rather than during movement programming.
Background: Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of visual processing in a contingent negative variation (CNV) task.
Methods: 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as preceding visual evoked potential components were assessed.
Results: Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500–1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced.
Conclusions: Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems.
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by problems in social behaviour, which are sometimes similar to some symptoms of autism-spectrum disorders (ASD). However, neuronal mechanisms of ASD-like deficits in ADHD have rarely been studied. The processing of biological motion–recently discussed as a marker of social cognition–was found to be disrupted in ASD in several studies. Thus in the present study we tested if biological motion processing is disrupted in ADHD. We used 64-channel EEG and spatio-temporal source analysis to assess event-related potentials associated with human motion processing in 21 children and adolescents with ADHD and 21 matched typically developing controls. On the behavioural level, all subjects were able to differentiate between human and scrambled motion. But in response to both scrambled and biological motion, the N200 amplitude was decreased in subjects with ADHD. After a spatio-temporal dipole analysis, a human motion specific activation was observable in occipital-temporal regions with a reduced and more diffuse activation in ADHD subjects. These results point towards neuronal determined alterations in the processing of biological motion in ADHD.
Background: Group-based social skills training (SST) has repeatedly been recommended as treatment of choice in high-functioning autism spectrum disorder (HFASD). To date, no sufficiently powered randomised controlled trial has been performed to establish efficacy and safety of SST in children and adolescents with HFASD. In this randomised, multi-centre, controlled trial with 220 children and adolescents with HFASD it is hypothesized, that add-on group-based SST using the 12 weeks manualised SOSTA–FRA program will result in improved social responsiveness (measured by the parent rated social responsiveness scale, SRS) compared to treatment as usual (TAU). It is further expected, that parent and self reported anxiety and depressive symptoms will decline and pro-social behaviour will increase in the treatment group. A neurophysiological study in the Frankfurt HFASD subgroup will be performed pre- and post treatment to assess changes in neural function induced by SST versus TAU.
Methods/design: The SOSTA – net trial is designed as a prospective, randomised, multi-centre, controlled trial with two parallel groups. The primary outcome is change in SRS score directly after the intervention and at 3 months follow-up. Several secondary outcome measures are also obtained. The target sample consists of 220 individuals with ASD, included at the six study centres.
Discussion: This study is currently one of the largest trials on SST in children and adolescents with HFASD worldwide. Compared to recent randomised controlled studies, our study shows several advantages with regard to in- and exclusion criteria, study methods, and the therapeutic approach chosen, which can be easily implemented in non-university-based clinical settings.
Trial registration: ISRCTN94863788 – SOSTA – net: Group-based social skills training in children and adolescents with high functioning autism spectrum disorder.
Adhesion of human pathogenic bacteria to endothelial cells is facilitated by fibronectin interaction
(2023)
Human pathogenic bacteria circulating in the bloodstream need to find a way to interact with endothelial cells (ECs) lining the blood vessels to infect and colonise the host. The extracellular matrix (ECM) of ECs might represent an attractive initial target for bacterial interaction, as many bacterial adhesins have reported affinities to ECM proteins, in particular to fibronectin (Fn). Here, we analysed the general role of EC-expressed Fn for bacterial adhesion. For this, we evaluated the expression levels of ECM coding genes in different ECs, revealing that Fn is the highest expressed gene and thereby, it is highly abundant in the ECM environment of ECs. The role of Fn as a mediator in bacterial cell-host adhesion was evaluated in adhesion assays of Acinetobacter baumannii, Bartonella henselae, Borrelia burgdorferi, and Staphylococcus aureus to ECs. The assays demonstrated that bacteria colocalised with Fn fibres, as observed by confocal laser scanning microscopy. Fn removal from the ECM environment (FN1 knockout ECs) diminished bacterial adherence to ECs in both static and dynamic adhesion assays to varying extents, as evaluated via absolute quantification using qPCR. Interactions between adhesins and Fn might represent the crucial step for the adhesion of human-pathogenic Gram-negative and Gram-positive bacteria targeting the ECs as a niche of infection.
Background: Repetitive transcranial magnetic stimulation (rTMS) allows non-invasive stimulation of the human brain. However, no suitable marker has yet been established to monitor the immediate rTMS effects on cortical areas in children.
Objective: TMS-evoked EEG potentials (TEPs) could present a well-suited marker for real-time monitoring. Monitoring is particularly important in children where only few data about rTMS effects and safety are currently available.
Methods: In a single-blind sham-controlled study, twenty-five school-aged children with ADHD received subthreshold 1 Hz-rTMS to the primary motor cortex. The TMS-evoked N100 was measured by 64-channel-EEG pre, during and post rTMS, and compared to sham stimulation as an intraindividual control condition.
Results: TMS-evoked N100 amplitude decreased during 1 Hz-rTMS and, at the group level, reached a stable plateau after approximately 500 pulses. N100 amplitude to supra-threshold single pulses post rTMS confirmed the amplitude reduction in comparison to the pre-rTMS level while sham stimulation had no influence. EEG source analysis indicated that the TMS-evoked N100 change reflected rTMS effects in the stimulated motor cortex. Amplitude changes in TMS-evoked N100 and MEPs (pre versus post 1 Hz-rTMS) correlated significantly, but this correlation was also found for pre versus post sham stimulation.
Conclusion: The TMS-evoked N100 represents a promising candidate marker to monitor rTMS effects on cortical excitability in children with ADHD. TMS-evoked N100 can be employed to monitor real-time effects of TMS for subthreshold intensities. Though TMS-evoked N100 was a more sensitive parameter for rTMS-specific changes than MEPs in our sample, further studies are necessary to demonstrate whether clinical rTMS effects can be predicted from rTMS-induced changes in TMS-evoked N100 amplitude and to clarify the relationship between rTMS-induced changes in TMS-evoked N100 and MEP amplitudes. The TMS-evoked N100 amplitude reduction after 1 Hz-rTMS could either reflect a globally decreased cortical response to the TMS pulse or a specific decrease in inhibition.
Based on a detailed case study of parallel grammar development distributed across two sites, we review some of the requirements for regression testing in grammar engineering, summarize our approach to systematic competence and performance profiling, and discuss our experience with grammar development for a commercial application. If possible, the workshop presentation will be organized around a software demonstration.