Refine
Year of publication
- 2002 (1)
Document Type
- Doctoral Thesis (1)
Language
- German (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
Die Lösung unbekannter Strukturen aus Pulverbeugungsdaten ist keineswegs eine Routineanwendung, und es steht noch einiges an Arbeit an, um die vorhandenen Methoden so weit zu automatisieren, daß sie von Nichtspezialisten, auch solchen mit kristallographischen Kenntnissen, direkt verwendet werden können. In dieser Arbeit konnte überzeugend dargelegt werden, daß die Anwendung des älteren Verfahrens der Fragmentsuche eine sehr gute Möglichkeit bietet, den Schwierigkeiten der Strukturlösung aus Pulverdaten erfolgreich zu begegnen. Durch graduelle Steigerung des Schwierigkeitsgrads bzw. der Komplexität der Strukturlösung von der anfänglichen Verwendung simulierter Pulverbeugungsdaten bekannter Strukturen über die Messung von Pulverbeugungsdiagrammen bekannter Strukturen bis hin zur Lösung unbekannter Strukturen konnte die sinnvolle Anwendbarkeit des Fragmentsuchprogramms PATSEE zweifelsfrei belegt werden. Die in den einzelnen Stadien der Untersuchungen diskutierten Einflüsse, wie die benötigte minimale Fragmentgröße oder die Fragmentqualität, lieferten entscheidende Hinweise für das Aufstellen einer einfachen Strategie zur Strukturlösung aus Pulverdaten mit PATSEE. So konnte gezeigt werden, daß für einen sinnvollen Strukturlösungsversuch in der Regel mehr als 50% des relativen Streubeitrags aller Atome in der asymmetrischen Einheit benötigt werden und daß sich diese Grenze nur durch die Verwendung qualitativ hochwertiger Pulverbeugungsdaten, wie sie an modernen Synchrotronringen erhalten werden können, durchbrechen läßt. Auch die Variation eines Torsionsfreiheitsgrads im Zuge der Rotationssuche kann entscheidende Vorteile verschaffen, wenn zwei für sich genommen zu kleine starre Bereiche miteinander kombiniert werden. Außerdem konnte die prinzipielle Verwendbarkeit sowohl mittels Kraftfeldmethoden berechneter als auch experimentell bestimmter Fragmente, wie sie in der CSD in großer Zahl bereitstehen, bestätigt werden. Die in PATSEE verwendete Vielzahl an Gütekriterien zur Beurteilung einer Lösung konnte auch im Falle von Pulverdaten im wesentlichen überzeugen. Zwar ist die Diskriminierung zwischen richtigen und falschen Lösungen bei weitem nicht so eindeutig in bezug auf alle Gütekriterien, aber zumindest wird eine sehr gute Bewertung hinsichtlich von CFOM - dem Gütekriterium, nach dem die Lösungen sortiert werden - und den beiden R-Werten RE(1) und RE(2) erreicht. Als etwas problematisch hat sich die Rotationssuche erwiesen, die nur auf der Beurteilung eines einzigen Gütekriteriums beruht. Da aber gerade der Rotationssuche als erstem Schritt der Fragmentsuche eine wichtige Bedeutung zukommt, ist der Anwender zu großer Sorgfalt bei deren Durchführung verpflichtet. Eine Grenze für Strukturlösungsversuche mit PATSEE stellen derzeit Strukturen mit mehreren Molekülen in der asymmetrischen Einheit dar. Da im einfachsten Fall (Z'= 2) bereits ein komplettes Molekül als Suchfragment einen relativen Streubeitrag von unter 50% aufweist, wird eine erfolgreiche Orientierung und Positionierung mit PATSEE nur noch für hervorragende Datensätze möglich sein. Für noch schwierigere Fälle (Z'> 2) oder für Verbindungen, bei denen nicht das gesamte Molekülgerüst als Suchfragment verwendet werden kann, bestehen dann praktisch keine Aussichten mehr auf eine erfolgreiche Strukturlösung mit PATSEE. Basierend auf diesen Ergebnissen, konnten PATSEE-Parameter empfohlen werden, die sowohl für große Fragmente als auch für den Grenzbereich der minimal benötigten Fragmentgröße gute Erfolgsaussichten für die Strukturlösung gewährleisteten. Dabei wichen die empfohlenen Parameter nur in geringem Maße von den für Einkristalldaten optimierten Werten ab. Anhand zweier unbekannter Strukturen konnte die empfohlene Strategie verifiziert werden. Zusätzlich wurde für eine der beiden Strukturen eine Einkristallstrukturbestimmung vorgenommen, welche die aus Pulverdaten gelöste Struktur bestätigte. Auch wenn einerseits die prinzipielle Anwendbarkeit der Fragmentsuche mit PATSEE auf Pulverbeugungsdaten bewiesen werden konnte und andererseits eine allgemeine Strategie zur Vorgehensweise geliefert wurde, sind doch noch nicht alle interessanten Fragestellungen geklärt. Hier sind zum einen die unbefriedigenden Möglichkeiten bei Strukturen mit mehreren Molekülen in der asymmetrischen Einheit zu nennen. Eine sinnvolle Erweiterung der Zahl simultan suchbarer Fragmente in PATSEE könnte diesen Schwachpunkt beheben. Zugleich könnte mit dieser Erweiterung die Anwendbarkeit auf flexiblere Molekülgeometrien ausgedehnt werden, so daß im Endeffekt eine Steigerung der einsetzbaren Fragmentgröße erreicht wird. Diese Erweiterung sollte bei der enormen Rechenleistung moderner Computersysteme kein unüberwindliches Hindernis darstellen, so daß die benötigte Zeit für einen PATSEE-Lauf mit mehreren zu suchenden Fragmenten auf maximal einige wenige Stunden ansteigen würde. Alternativ wäre zu überlegen, ob nicht das Aufheben der strikten Trennung von Rotationssuche und Translationssuche, also eine 6-dimensionale Fragmentsuche, die bisweilen zu beobachtenden Probleme der Rotationssuche beheben würde. Auch bei dieser Änderung der Vorgehensweise in PATSEE könnten moderne Computer sinnvoll eingesetzt werden. Vorteilhaft für die Strukturlösung wäre hier die Kombination der sehr erfolgreichen Diskriminierung der Gütekriterien bei der Translationssuche mit der bisher kritischen Bestimmung der Orientierung. Eine zweite Fragestellung, die im Rahmen dieser Arbeit nicht geklärt werden konnte, betrifft die Anwendbarkeit auf makromolekulare Verbindungen, die über eine große interne Regelmäßigkeit verfügen, wie beispielsweise kleinere Peptide mit alpha-helikaler Struktur oder einer beta-Faltblattstruktur. Verschiedene Testreihen an derartigen Verbindungen belegen die prinzipielle Machbarkeit, und außerdem konnte bereits in mindestens einem ähnlich gelagerten Fall [17] gezeigt werden, daß derartige Strukturlösungsversuche bei sehr großen Verbindungen durchführbar sind. Insbesondere wegen der erheblichen Schwierigkeiten bei der Kristallisation derartiger Verbindungen und dem großen wissenschaftlichen Interesse an ihrer Struktur könnten erfolgversprechende Ansätze zur Strukturlösung aus Pulverdaten einen wichtigen Beitrag in der Pharmazie, der Pharmakologie, der Biologie und nicht zuletzt in der Medizin leisten.