Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
Institute
The ABC protein ABCE1, also called HP68 or RNase L inhibitor (RLI), is one of the most conserved proteins in evolution. It is universally expressed in eukaryotes and archaea, where ABCE1 is essential for life. ABCE1 plays a crucial role in translation initiation and ribosome biogenesis, however, the molecular mechanism of ABCE1 remains unclear. In addition to two ABC ATPase domains, ABCE1 contains a unique N-terminal region with eight conserved cysteines predicted to coordinate iron-sulfur (Fe-S) clusters. To analyze the function of ABCE1, the hyperthermophilic crenarchaeote Sulfolobus solfataricus was chosen as a model system. S. solfataricus ABCE1 was overexpressed homologously in S. solfataricus and heterologously in E. coli. Noteworthy, for tagged-protein production in S. solfataricus a novel expression system based on a virus shuttle vector was established. This is the first example for a successful overexpression and purification of isolated full-length ABCE1. For the first time it was shown that ABCE1 indeed bears biochemical properties of an ABC protein even though it has unique features. Remarkably, the nucleotide binding domains (NBDs) of ABCE1 bound ATP and AMP, but were functionally non-equivalent in ATP hydrolysis. Mutations of conserved residues in the second NBD led to a hyperactive ATPase, which implies an intramolecular mechanism of dimer formation. Truncation of the Fe-S cluster domains did not influence ATPase activity. The Fe-S clusters of ABCE1 were analyzed by biophysical and biochemical methods. As presented in this study, ABCE1 harbors two essential diamagnetic [4Fe-4S]2+ clusters, one ferredoxin-like cluster formed by cysteines at position 4/5/6/7 and one unique ABCE1 cluster formed by cysteines at position 1/2/3/8. ABCE1 was found to be associated with RNA after purification from S. solfataricus and bound ribosomal RNA in vitro. In addition, ABCE1 showed homo-oligomerization and appeared to form a hexameric complex of ~440 kDa, which was RNase sensitive. Archaeal ABCE1 associated with ribosomes, however, the unique Fe-S clusters of ABCE1 were not required for this interaction. Although archaeal ABCE1 assembled with ribosomes and ribosomal RNA, ABCE1 proved not to be essential for translation in S. solfataricus and did not interact with archaeal initiation factors. Nevertheless, the ABCE1 gene is one of the few genes conserved between archaea and eukaryotes and fulfills a universal task, which needs further characterization.
Nachwuchswissenschaftler haben für Kongresse nur wenig Zeit. Meistens verlassen sie den Platz im Labor nur,
um Tagungen des eigenen Spezialgebiets zu besuchen. Gelegenheit, über den eigenen Tellerrand zu schauen, bot
die Tagung »Molecular Life Sciences« der Gesellschaft für Biochemie und Molekularbiologie (GBM) auf dem
Campus Westend mit ihrem neuen Konzept für Nachwuchswissenschaftler.
The ABC protein ABCE1, formerly named RNase L inhibitor RLI1, is one of the most conserved proteins in evolution and is expressed in all organisms except eubacteria. Because of its fundamental role in translation initiation and/or ribosome biosynthesis, ABCE1 is essential for life. Its molecular mechanism has, however, not been elucidated. In addition to two ABC ATPase domains, ABCE1 contains a unique N-terminal region with eight conserved cysteines, predicted to coordinate iron-sulfur clusters. Here we present detailed information on the type and on the structural organization of the Fe-S clusters in ABCE1. Based on biophysical, biochemical, and yeast genetic analyses, ABCE1 harbors two essential diamagnetic [4Fe-4S](2+) clusters with different electronic environments, one ferredoxin-like (CPX(n)CX(2)CX(2)C; Cys at positions 4-7) and one unique ABCE1-type cluster (CXPX(2)CX(3)CX(n)CP; Cys at positions 1, 2, 3, and 8). Strikingly, only seven of the eight conserved cysteines coordinating the Fe-S clusters are essential for cell viability. Mutagenesis of the cysteine at position 6 yielded a functional ABCE1 with the ferredoxin-like Fe-S cluster in a paramagnetic [3Fe-4S](+) state. Notably, a lethal mutation of the cysteine at position 4 can be rescued by ligand swapping with an adjacent, extra cysteine conserved among all eukaryotes.
We have recently proposed a "processive clamp" model for the ATP hydrolysis cycle of the nucleotide-binding domain (NBD) of the mitochondrial ABC transporter Mdl1 (Janas, E., Hofacker, M., Chen, M., Gompf, S., van der Does, C., and Tampé, R. (2003) J. Biol. Chem. 278, 26862-26869). In this model, ATP binding to two monomeric NBDs leads to formation of an NBD dimer that, after hydrolysis of both ATPs, dissociates and releases ADP. Here, we set out to follow the association and dissociation of NBDs using a novel minimally invasive site-specific labeling technique, which provides stable and stoichiometric attachment of fluorophores. The association and dissociation kinetics of the E599Q-NBD dimer upon addition and removal of ATP were determined by fluorescence self-quenching. Remarkably, the rate of ATP hydrolysis of the wild type NBD is determined by the rate of NBD dimerization. In the E599QNBD, however, in which the ATP hydrolysis is 250-fold reduced, the ATP hydrolysis reaction controls dimer dissociation and the overall ATPase cycle. These data explain contradicting observations on the rate-limiting step of various ABC proteins and further demonstrate that dimer formation is an important step in the ATP hydrolysis cycle.