Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
- Biowissenschaften (2)
- Medizin (1)
Tens of thousands of man-made chemicals are in regular use and discharged into the environment. Many of them are known to interfere with the hormonal systems in humans and wildlife. Given the complexity of endocrine systems, there are many ways in which endocrine-disrupting chemicals (EDCs) can affect the body’s signaling system, and this makes unraveling the mechanisms of action of these chemicals difficult. A major concern is that some of these EDCs appear to be biologically active at extremely low concentrations. There is growing evidence to indicate that the guiding principle of traditional toxicology that “the dose makes the poison” may not always be the case because some EDCs do not induce the classical dose–response relationships. The European Union project COMPRENDO (Comparative Research on Endocrine Disrupters—Phylogenetic Approach and Common Principles focussing on Androgenic/Antiandrogenic Compounds) therefore aims to develop an understanding of potential health problems posed by androgenic and antiandrogenic compounds (AACs) to wildlife and humans by focusing on the commonalities and differences in responses to AACs across the animal kingdom (from invertebrates to vertebrates).
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
Many environmental chemicals are suspected of disturbing the human and animal endocrine system. These so-called endocrine disruptors can operate in many ways. The interaction of endocrine disruptive effects that eventually endanger human health is still unclear. However, one of the basic mecha-nisms of endocrine disruption is the inhibition of key enzymes in the hormone metabolism. In this study, we focused on the inhibitory potency of suspected endocrine disrupting compounds on aromatase (P450arom) and 5alpha-reductase (5alpha-Re) activities in human tissue and human cancer cells. Both enzymes are essential for the human sex steroid hormone metabolism. We were able to demonstrate that the organotin compounds tributyltin (TBT) and triphenyltin (TPT) are potent unspecific inhibitors of P450arom and 5alpha-Re activity. Prochloraz and fenarimol inhibited P450arom activity at low concentrations (IC50<2 µM), while 5alpha-Re activity was only impaired at higher concentrations (IC50>10 µM). While the human tissue assay proved to be more practical and sensitive as a screening tool for putative endocrine disruptors, the cell assay reflected partly the situation in vivo. In another experimental series, we investigated the inhibitory effect of TPT on P450arom, 5alpha-Re, 3beta-HSD type 2, 17beta-HSD type 1 and type 3 alone and in combination with the strong antioxidant dithioerythrithol (DTE). TPT inhibited unspecifically all enzymes that were tested. The experiments also showed that DTE is able to compensate the adverse effects of TPT, and that the effectiveness of the compensatory activity of DTE differs among the enzymes investigated. The suppressed 5alpha-Re activity could not be reactivated with DTE. Conceivably, cysteine residues that are responsible for the tertiary and quarternary structure of the enzyme are critical targets for TPT. A human sampling study was undertaken with the COMPRENDO partner in Gdansk. 60 Polish and 15 German blood samples were investigated for chemical residues and sex hormone concentrations. In addition, 15 placenta samples from Poland and Germany, respectively, were tested for chemical residues, P450arom activities and CYP19 mRNA contents. The chemical analysis was performed by the COMPRENDO partners in Milan (p,p´DDE), Orleans (TBT and TPT) and Ioannina (diuron, fenarimol, linuron und vinclozolin). The results showed that individual sex hormone concentrations in blood were not correlated with chemical body burden. The detected differences in sex hormone concentrations, specific aromatase activity and relative CYP19 mRNA content of Polish and German donors were presumably the result of other factors than the ones determined in this study. Another task of the EU-project was the investigation of the effects of chemical exposure of the aquatic model organisms Pimephales promelas, Rutilus rutilus and Xenopus laevis. We investigated the specific P450arom and 5alpha-Re activities in brain and gonads of the animals. During the qualitative investigation of the androgen metabolism in Xenopus laevis brain, 5alpha-reductase activity was discovered for the first time. In contrast to the inhibitory potency of TPT discovered in our enzyme assays, TPT exposure of aquatic model organisms had no observed effect on enzyme activity in the organs investigated, except for P450arom activities in female gonads of Pimephales promelas at 320 ng TPT/L. In this group, mean P450arom activities were elevated, possibly as a result of an overshooting upregulation due to the inhibition of P450arom by TPT. The exposure of Rutilus rutilus and Xenopus laevis to the effector substances methyltestosterone and letrozole resulted in slightly different mean enzyme activities compared to the control group. In conclusion, many of the tested pesticides are able to inhibit P450arom and 5alpha-Re, and thus might be of clinical relevance. However, results are not always coherent, and possible risks for human and wildlife health are therefore difficult to predict. Risk assessment will require large studies with an additional number of short and long term in vitro and in vivo assays. Any extrapolation to humans should be very meticulously performed.