Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Calcium (1)
- Patch-Clamp-Methode (1)
- Phospholipide (1)
- Yeast-Two-Hybrid-System (1)
- calcium (1)
- patch clamp technique (1)
- phospholipids (1)
- siRNA (1)
- yeast two-hybrid system (1)
Institute
- Pharmazie (2)
In the first part of this study, we have identified the two steroid hormones progesterone and norgestimate as novel TRPC channel blockers. Both substances blocked TRPC-mediated Ca2+ influx with micromolar activities in fluorometric measurements. TRPC channel inhibition did not seem to be a general steroid effect since another progestin, the norgestimate metabolite levonorgestrel, was not effective. Norgestimate was 4- to 5-fold more active on the TRPC3/6/7 subfamily compared to TRPC4/5, whereas progesterone was similarly potent. This selectivity of norgestimate was confirmed by patch clamp recordings. As norgestimate blocked channels directly gated by DAG with a fast kinetic, we assume the compound acts on the channel protein itself. This view was further substantiated by the lack of effects on IP3R-mediated Ca2+ release from the endoplasmic reticulum, which is activated in parallel with TRPCs by Gq/11-coupled receptor stimulation. Norgestimate did not only block ectopically expressed TRPC channels but also native, TRPC-mediated currents in rat aortic smooth muscle cells with similar activity. The usefulness of norgestimate as a tool compound for the investigation of physiological TRPC functions was tested in isolated vessel rings. Consistent with TRPC6 being an essential component of the alpha-1-adrenoceptor-activated cation channel, we demonstrated a direct vasorelaxant, endothelium-independent effect of norgestimate on rat aortic rings precontracted with phenylephrine. Thus, our results provide further experimental support for a role of TRPC6 in alpha-1-adrenergic vessel constriction. In the second part of this study, we screened a human aorta cDNA-library for novel TRPC4-interacting proteins with a modified yeast two-hybrid (Y2H) system in which the TRPC4-C-terminus was expressed as tetrameric bait protein, thereby mimicking the native channel conformation. Of the eleven interacting proteins found SESTD1 was chosen for further analyses since it contains a phospholipid-binding Sec14p-like domain and thus could be involved in regulation of TRPC channels by phospholipids. After the biochemical validation of the found interaction, the first spectrin domain of SESTD1 was then identified to interact with the CIRB domain of TRPC4 in directed Y2H tests. SESTD1 also co-immunoprecipitated with the closely related TRPC5 protein in which the SESTD1-binding domain is highly conserved. Independent of the CIRB site, co-immunoprecipitation with TRPC6 and the distantly related TRPM8 channel was observed indicating the existence of other sites in these channel proteins that mediate interaction with SESTD1. Analysis of SESTD1 gene expression in human tissues showed that its transcripts are ubiquitously expressed and tissues with significant coexpression with TRPC4 and -5 were identified. We have generated two polyclonal antisera directed against SESTD1 that consistently detected SESTD1 protein in brain, aorta, heart, and in smooth muscle and endothelial cells. The functional consequences of the found interaction were investigated by examination of the TRPC5-mediated Ca2+ influx in a clonal HM1 cell line stably expressing the channel. Since SESTD1 overexpression had no detectable effects on TRPC5-mediated Ca2+ influx, most likely due to expression of endogenous SESTD1, we knocked-down the native protein with specific siRNA. This procedure reduced TRPC5-mediated Ca2+ influx following receptor stimulation by 50%. Parallel biotinylation experiments did not reveal any differences in cell surface expressed TRPC5-protein, suggesting that reduction of TRPC5 activity resulted from a loss of a direct SESTD1 effect on the channel. In addition, in immunofluorescence experiments we observed that reduced SESTD1 protein levels resulted in a redistribution of the multifunctional protein ß-catenin from the plasma membrane to the cytosol. This result may point to an involvement of SESTD1 in formation and maintenance of adherens junctions. SESTD1 contains a phospholipid-binding Sec14p-like domain and we were the first to demonstrate its Ca2+-dependent binding to phosphatidic acid and all physiological phosphatidylinositol mono- and bisphosphates in vitro. The physiological function of this binding activity is not known at present, but it could play a role in regulation of associated TRPC channels. TRPC4 and -5 channels are activated by phospholipid hydrolysis and also bind phospholipids directly. The identification of SESTD1 as novel TRPC-interacting protein could thus be an important step forward in the investigation and better comprehension of the complex molecular mechanisms of TRP channel regulation by lipids.
TRPC channels are a family of nonselective cation channels that regulate ion homeostasis and intracellular Ca2+ signaling in numerous cell types. Important physiological functions such as vasoregulation, neuronal growth, and pheromone recognition have been assigned to this class of ion channels. Despite their physiological relevance, few selective pharmacological tools are available to study TRPC channel function. We, therefore, screened a selection of pharmacologically active compounds for TRPC modulating activity. We found that the synthetic gestagen norgestimate inhibited diacylglycerol-sensitive TRPC3 and TRPC6 with IC50s of 3–5 µM, while half-maximal inhibition of TRPC5 required significantly higher compound concentrations (>10 µM). Norgestimate blocked TRPC-mediated vasopressin-induced cation currents in A7r5 smooth muscle cells and caused vasorelaxation of isolated rat aorta, indicating that norgestimate could be an interesting tool for the investigation of TRP channel function in native cells and tissues. The steroid hormone progesterone, which is structurally related to norgestimate, also inhibited TRPC channel activity with IC50s ranging from 6 to 18 µM but showed little subtype selectivity. Thus, TRPC channel inhibition by high gestational levels of progesterone may contribute to the physiological decrease of uterine contractility and immunosuppression during pregnancy.