Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- ABC-Transporter (1)
- Antigenprozessierung (1)
- Cystein-Scanning Mutagenese (1)
- Membrantopologie (1)
- TAP Transporter (1)
Institute
Der humane ABC-Transporter TAP (transporter associated with antigen processing) spielt in der Antigenprozessierung und in der MHC Klasse I-vermittelten Antigenpräsentation eine zentrale Rolle. Unter ATP-Hydrolyse katalysiert der heterodimere TAP-Komplex den Transport von proteosomal degradierten Peptiden aus dem Cytosol in das ER-Lumen. Diese werden im Peptidbeladungskomplex (PLC) auf MHC Klasse I-Moleküle geladen und zur Zelloberfläche transportiert, wo sie zytotoxischen T-Zellen präsentiert werden. Die Assemblierung eines funktionalen Komplexes hängt dabei von der korrekten intra- und intermolekularen Anordnung seiner Transmembransegmente (TMS) ab. Die strukturelle Organisation des TAP-Komplexes ist schon seit vielen Jahren Gegenstand intensiver Forschung und wird in der Literatur kontrovers diskutiert. Cystein-freie Proteinvarianten dienen bei der Untersuchung der Topologie als sehr gute Hilfsmittel und wurden bereits erfolgreich zur Aufklärung der Membrantopologie von komplexen Membranproteinen, wie P-glycoprotein oder der Lactose-Permease LacY, eingesetzt (Kaback et al., 2001; Loo und Clarke, 1995). Im ersten Teil der vorliegenden Arbeit wurden humane TAP1- und TAP2-defiziente Fibroblasten, die ansonsten alle anderen Komponenten der Antigenpräsentationsmaschinerie besitzen, stabil mit der jeweiligen humanen Cystein-freien TAP1- oder TAP2-Untereinheiten transfiziert. Alle 19 natürlichen Cysteine von TAP1 und TAP2 konnten vorher durch de novo Gensynthese ausgetauscht werden. Nach erfolgreicher Expression konnte ein ATP-abhängiger Peptidtransport, der spezifisch durch den viralen Inhibitor ICP47 inhibiert wurde, nachgewiesen werden. Außerdem konnte die MHC Klasse I-Oberflächenexpression der Zellen, ein Indikator einer funktionsfähigen Antigenpräsentierung, nach Transfektion mit den Cystein-freien TAP-Untereinheiten wiederhergestellt werden. Im zweiten Abschnitt wurde die Membrantopologie des humane TAP-Transporters in einem funktionalen Peptidbeladungskomplex durch ortsspezifische Mutagenese in Kombination mit der Markierung mittels thiolspezifischer Fluorophore untersucht. Durch Co-Immunpräzipitationen und Transportstudien mit radioaktiv-markierten Peptiden konnte die Funktionalität des, in Sf9 Zellen exprimierten, Cystein-freien TAP-Komplexes gezeigt werden. Einzelne Cysteine wurden aufgrund von Hydrophobizitätsanalysen in Kombination mit Sequenzvergleichen von anderen ABC-Transportern in vorhergesagte cytosolische oder ER-luminale Schleifen der TAP1-Untereinheit eingeführt und deren Zugänglichkeit mit dem thiolspezifischen, membran-impermeablen Fluorophor Fluoreszein-5-Maleimid in semi-permeabilisierten Zellen untersucht. Es konnte zum ersten Mal experimentell gezeigt werden, dass die Transmembrandomäne (TMD) der TAP1-Untereinheit in einem funktionalen Komplex aus zehn Transmembranhelices aufgebaut ist. Die TMD lässt sich in eine für die Heterodimerisierung, die Peptidbindung und den Transport essentielle und für viele ABC-Transporter charakteristische Core-Domäne, und zusätzliche N-terminale Domänen, die für die Bindung von Tapasin und die Assemblierung des PLCs verantwortlich sind, unterteilen. Somit konnte experimentell die Membrantopologie des ABC-Transporters TAP in einem funktionalen Peptidbeladungskomplex aufgeklärt werden. Der dritte Teil der Arbeit befasste sich mit der Untersuchung der veränderten Peptidbeladungskapazität, die in Kombinationen aus wildtyp TAP1 und Cystein-freiem TAP2 beobachtet wurde. Durch ortsspezifische Mutagenese wurden einzelne Cysteine in TAP2 wiedereingeführt und deren Funktionalität in Transportstudien analysiert. Es konnte ein einzelnes Cystein in TAP2 identifiziert werden, welches die Peptidbeladungskapazität beeinflusst und durch Modifikation mit thiolspezifischen Reagenzien zum Schalter für die Peptidbindung wird. Durch Quervernetzungsstudien mit radioaktiv-markierten Peptiden konnte weiterhin ein direkter Kontakt zwischen dem Cystein und dem gebundenen und somit transportierten Peptid des TAP-Transporters nachgewiesen werden.
The transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the endoplasmic reticular lumen for subsequent loading onto major histocompatibility complex (MHC) class I molecules. These peptide-MHC complexes are inspected at the cell surface by cytotoxic T-lymphocytes. Assembly of the functional peptide transport and loading complex depends on intra- and intermolecular packing of transmembrane helices (TMs). Here, we have examined the membrane topology of human TAP1 within an assembled and functional transport complex by cysteine-scanning mutagenesis. The accessibility of single cysteine residues facing the cytosol or endoplasmic reticular lumen was probed by a minimally invasive approach using membrane-impermeable, thiol-specific fluorophores in semipermeabilized “living” cells. TAP1 contains ten transmembrane segments, which place the N and C termini in the cytosol. The transmembrane domain consists of a translocation core of six TMs, a building block conserved among most ATP-binding cassette transporters, and a unique additional N-terminal domain of four TMs, essential for tapasin binding and assembly of the peptide-loading complex. This study provides a first map of the structural organization of the TAP machinery within the macromolecular MHCI peptide-loading complex.
By translocating proteasomal degradation products into the endoplasmic reticulum for loading of major histocompatibility complex I molecules, the ABC transporter TAP plays a focal role in the adaptive immunity against infected or malignantly transformed cells. A key question regarding the transport mechanism is how the quality of the incoming peptide is detected and how this information is transmitted to the ATPase domains. To identify residues involved in this process, we evolved a Trojan horse strategy in which a small artificial protease is inserted into antigenic epitopes. After binding, the TAP backbone in contact is cleaved, allowing the peptide sensor site to be mapped by mass spectrometry. Within this sensor site, we identified residues that are essential for tight coupling of peptide binding and transport. This sensor and transmission interface is restructured during the ATP hydrolysis cycle, emphasizing its important function in the cross-talk between the transmembrane and the nucleotide-binding domains. This allocrite sensor may be similarly positioned in other members of the ABC exporter family.