Refine
Year of publication
Document Type
- Article (27)
Language
- English (27)
Has Fulltext
- yes (27)
Is part of the Bibliography
- no (27)
Keywords
- Hodgkin lymphoma (3)
- classical Hodgkin lymphoma (3)
- B-cell lymphoma (2)
- B-cell immunology (1)
- B-cell receptor (1)
- B-cell transcription factors (1)
- BATF3 (1)
- BEACOPP (1)
- Cell staining (1)
- DNA methylation (1)
Institute
TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma
(2009)
Proliferation and survival of Hodgkin and Reed/Sternberg (HRS) cells, the malignant cells of classical Hodgkin lymphoma (cHL), are dependent on constitutive activation of nuclear factor {kappa}B (NF-{kappa}B). NF-{kappa}B activation through various stimuli is negatively regulated by the zinc finger protein A20. To determine whether A20 contributes to the pathogenesis of cHL, we sequenced TNFAIP3, encoding A20, in HL cell lines and laser-microdissected HRS cells from cHL biopsies. We detected somatic mutations in 16 out of 36 cHLs (44%), including missense mutations in 2 out of 16 Epstein-Barr virus–positive (EBV+) cHLs and a missense mutation, nonsense mutations, and frameshift-causing insertions or deletions in 14 out of 20 EBV– cHLs. In most mutated cases, both TNFAIP3 alleles were inactivated, including frequent chromosomal deletions of TNFAIP3. Reconstitution of wild-type TNFAIP3 in A20-deficient cHL cell lines revealed a significant decrease in transcripts of selected NF-{kappa}B target genes and caused cytotoxicity. Extending the mutation analysis to primary mediastinal B cell lymphoma (PMBL), another lymphoma with constitutive NF-{kappa}B activity, revealed destructive mutations in 5 out of 14 PMBLs (36%). This report identifies TNFAIP3 (A20), a key regulator of NF-{kappa}B activity, as a novel tumor suppressor gene in cHL and PMBL. The significantly higher frequency of TNFAIP3 mutations in EBV– than EBV+ cHL suggests complementing functions of TNFAIP3 inactivation and EBV infection in cHL pathogenesis.
Background: Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required. Methodology/Principal Findings: Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression. Conclusions/Significance: We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes—DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1—that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs.
Simple Summary: The role of transcriptionally deregulated miRNAs (microRNAs) in classical Hodgkin lymphoma (cHL) is still not fully understood. To address this issue, we have performed global miRNA expression profiling of commonly used cHL cell lines and we present a complete cHL miRNome (microRNome). Within this group, we identify miRNAs recurrently deregulated in cHL cell lines, and compare them to non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells. Moreover, we show that several of the recurrently overexpressed miRNAs in cHL cell lines, and also primary microdissected HRS (Hodgkin and Reed-Sternberg) cells, target known B-cell-related transcription factors and NF-κB inhibitors. These findings provide evidence that deregulated miRNAs contribute to the loss of B-cell phenotype and NF-κB activation observed in this lymphoma.
Abstract: A hallmark of classical Hodgkin lymphoma (cHL) is the attenuation of B-cell transcription factors leading to global transcriptional reprogramming. The role of miRNAs (microRNAs) involved in this process is poorly studied. Therefore, we performed global miRNA expression profiling using RNA-seq on commonly used cHL cell lines, non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells as controls and characterized the cHL miRNome (microRNome). Among the 298 miRNAs expressed in cHL, 56 were significantly overexpressed and 23 downregulated (p < 0.05) compared to the controls. Moreover, we identified five miRNAs (hsa-miR-9-5p, hsa-miR-24-3p, hsa-miR-196a-5p, hsa-miR-21-5p, hsa-miR-155-5p) as especially important in the pathogenesis of this lymphoma. Target genes of the overexpressed miRNAs in cHL were significantly enriched (p < 0.05) in gene ontologies related to transcription factor activity. Therefore, we further focused on selected interactions with the SPI1 and ELF1 transcription factors attenuated in cHL and the NF-ĸB inhibitor TNFAIP3. We confirmed the interactions between hsa-miR-27a-5p:SPI1, hsa-miR-330-3p:ELF-1, hsa-miR-450b-5p:ELF-1 and hsa-miR-23a-3p:TNFAIP3, which suggest that overexpression of these miRNAs contributes to silencing of the respective genes. Moreover, by analyzing microdissected HRS cells, we demonstrated that these miRNAs are also overexpressed in primary tumor cells. Therefore, these miRNAs play a role in silencing the B-cell phenotype in cHL.
DNA methylation was shown previously to be a crucial mechanism responsible for transcriptional deregulation in the pathogenesis of classical Hodgkin lymphoma (cHL). To identify epigenetically inactivated miRNAs in cHL, we have analyzed the set of miRNAs downregulated in cHL cell lines using bisulfite pyrosequencing. We focused on miRNAs with promoter regions located within or <1000 bp from a CpG island. Most promising candidate miRNAs were further studied in primary Hodgkin and Reed-Sternberg (HRS) cells obtained by laser capture microdissection. Last, to evaluate the function of identified miRNAs, we performed a luciferase reporter assay to confirm miRNA: mRNA interactions and therefore established cHL cell lines with stable overexpression of selected miRNAs for proliferation tests. We found a significant reverse correlation between DNA methylation and expression levels of mir-339-3p, mir-148a-3p, mir-148a-5p and mir-193a-5 demonstrating epigenetic regulation of these miRNAs in cHL cell lines. Moreover, we demonstrated direct interaction between miR-148a-3p and IL15 and HOMER1 transcripts as well as between mir-148a-5p and SUB1 and SERPINH1 transcripts. Furthermore, mir-148a overexpression resulted in reduced cell proliferation in the KM-H2 cell line. In summary, we report that mir-148a is a novel tumor suppressor inactivated in cHL and that epigenetic silencing of miRNAs is a common phenomenon in cHL.
In pathology, tissue images are evaluated using a light microscope, relying on the expertise and experience of pathologists. There is a great need for computational methods to quantify and standardize histological observations. Computational quantification methods become more and more essential to evaluate tissue images. In particular, the distribution of tumor cells and their microenvironment are of special interest. Here, we systematically investigated tumor cell properties and their spatial neighborhood relations by a new application of statistical analysis to whole slide images of Hodgkin lymphoma, a tumor arising in lymph nodes, and inflammation of lymph nodes called lymphadenitis. We considered properties of more than 400, 000 immunohistochemically stained, CD30-positive cells in 35 whole slide images of tissue sections from subtypes of the classical Hodgkin lymphoma, nodular sclerosis and mixed cellularity, as well as from lymphadenitis. We found that cells of specific morphology exhibited significant favored and unfavored spatial neighborhood relations of cells in dependence of their morphology. This information is important to evaluate differences between Hodgkin lymph nodes infiltrated by tumor cells (Hodgkin lymphoma) and inflamed lymph nodes, concerning the neighborhood relations of cells and the sizes of cells. The quantification of neighborhood relations revealed new insights of relations of CD30-positive cells in different diagnosis cases. The approach is general and can easily be applied to whole slide image analysis of other tumor types.
Anaplastic large cell lymphoma (ALCL) and classical Hodgkin lymphoma (cHL) are lymphomas that contain CD30-expressing tumor cells and have numerous pathological similarities. Whereas ALCL is usually diagnosed at an advanced stage, cHL more frequently presents with localized disease. The aim of the present study was to elucidate the mechanisms underlying the different clinical presentation of ALCL and cHL. Chemokine and chemokine receptor expression were similar in primary ALCL and cHL cases apart from the known overexpression of the chemokines CCL17 and CCL22 in the Hodgkin and Reed-Sternberg (HRS) cells of cHL. Consistent with the overexpression of these chemokines, primary cHL cases encountered a significantly denser T cell microenvironment than ALCL. Additionally to differences in the interaction with their microenvironment, cHL cell lines presented a lower and less efficient intrinsic cell motility than ALCL cell lines, as assessed by time-lapse microscopy in a collagen gel and transwell migration assays. We thus propose that the combination of impaired basal cell motility and differences in the interaction with the microenvironment hamper the dissemination of HRS cells in cHL when compared with the tumor cells of ALCL.
Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is a subtype of Hodgkin lymphoma with a preserved B‐cell phenotype and follicular T helper (TFH) cells rosetting around the tumor cells, the lymphocyte‐predominant (LP) cells. As we recently described reactivity of the B‐cell receptors of LP cells of some NLPHL cases with Moraxella spp. proteins, we hypothesized that LP cells could present peptides to rosetting T cells in a major histocompatibility complex class II (MHCII)‐bound manner. Rosetting PD1+ T cells were present in the majority of NLPHL cases, both in typical (17/20) and variant patterns (16/19). In most cases, T‐cell rosettes were CD69+ (typical NLPHL, 17/20; NLPHL variant, 14/19). Furthermore, both MHCII alpha and beta chains were expressed in the LP cells in 23/39 NLPHL. Proximity ligation assay and confocal laser imaging demonstrated interaction of the MHCII beta chain expressed by the LP cells and the T‐cell receptor alpha chain expressed by rosetting T cells. We thus conclude that rosetting T cells in NLPHL express markers that are encountered after antigenic exposure, that MHCII is expressed by the LP cells, and that LP cells interact with rosetting T cells in an immunological synapse in a subset of cases. As they likely receive growth stimulatory signals in this way, blockade of this interaction, for example, by PD1‐directed checkpoint inhibitors, could be a treatment option in a subset of cases in the future.
Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) can present with different histopathological growth patterns. The impact of these histopathological growth patterns on relapse characteristics is unknown. We therefore analyzed paired biopsies obtained at initial diagnosis and relapse from 33 NLPHL patients who had received first‐line treatment within German Hodgkin Study Group (GHSG) trial protocols, and from a second cohort of 41 relapsed NLPHL patients who had been treated outside GHSG studies. Among the 33 GHSG patients, 21 patients presented with a typical growth pattern at initial diagnosis, whereas 12 patients had a variant histology. The histopathological growth patterns at initial diagnosis and at relapse were consistent in 67% of cases. A variant histology at initial diagnosis was associated with a shorter median time to lymphoma recurrence (2.8 vs 5.2 years; P = .0219). A similar tendency towards a shorter median time to lymphoma recurrence was observed for patients presenting with a variant histology at relapse, irrespective of the growth pattern at initial diagnosis. Results obtained from the 41 NLPHL patients who had been treated outside GHSG studies were comparable (median time to lymphoma recurrence for variant histology vs typical growth pattern at initial diagnosis: 1.5 vs 7.0 years). In conclusion, the histopathological growth pattern remains consistent at relapse in the majority of NLPHL cases, and has major impact on the time of relapse.
Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is an indolent lymphoma, but can transform into diffuse large B cell lymphoma (DLBCL), showing a more aggressive clinical behavior. Little is known about these cases on the molecular level. Therefore, the aim of the present study was to characterize DLBCL transformed from NLPHL (LP-DLBCL) by gene expression profiling (GEP). GEP revealed an inflammatory signature pinpointing to a specific host response. In a coculture model resembling this host response, DEV tumor cells showed an impaired growth behavior. Mechanisms involved in the reduced tumor cell proliferation included a downregulation of MYC and its target genes. Lack of MYC expression was also confirmed in 12/16 LP-DLBCL by immunohistochemistry. Furthermore, CD274/PD-L1 was upregulated in DEV tumor cells after coculture with T cells or monocytes and its expression was validated in 12/19 cases of LP-DLBCL. Thereby, our data provide new insights into the pathogenesis of LP-DLBCL and an explanation for the relatively low tumor cell content. Moreover, the findings suggest that treatment of these patients with immune checkpoint inhibitors may enhance an already ongoing host response in these patients.
As current classical Hodgkin lymphoma (cHL) treatment strategies have pronounced side-effects, specific inhibition of signaling pathways may offer novel strategies in cHL therapy. Basal autophagy, a regulated catabolic pathway to degrade cell's own components, is in cancer linked with both, tumor suppression or promotion. The finding that basal autophagy enhances tumor cell survival would thus lead to immediately testable strategies for novel therapies. Thus, we studied its contribution in cHL.We found constitutive activation of autophagy in cHL cell lines and primary tissue. The expression of key autophagy-relevant proteins (e.g. Beclin-1, ULK1) and LC3 processing was increased in cHL cells, even in lymphoma cases. Consistently, cHL cells exhibited elevated numbers of autophagic vacuoles and intact autophagic flux. Autophagy inhibition with chloroquine or inactivation of ATG5 induced apoptosis and reduced proliferation of cHL cells. Chloroquine-mediated inhibition of basal autophagy significantly impaired HL growth in-vivo in NOD SCID γc-/- (NSG) mice. We found that basal autophagy plays a pivotal role in sustaining mitochondrial function.We conclude that cHL cells require basal autophagy for growth, survival and sustained metabolism making them sensitive to autophagy inhibition. This suggests basal autophagy as useful target for new strategies in cHL treatment.