Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Carbonate geochemistry (1)
- Diagenesis (1)
- Dolomite (1)
- Dolomitisation (1)
- Karstification (1)
- Paleothermometry (1)
- Proxy record (1)
- Rock archive (1)
- U-Pb dating (1)
Institute
Holocene climate was characterised by variability on multi-centennial to multi-decadal time scales. In central Europe, these fluctuations were most pronounced during winter. Here we present a record of past winter climate variability for the last 10.8 ka based on four speleothems from Bunker Cave, western Germany. Due to its central European location, the cave site is particularly well suited to record changes in precipitation and temperature in response to changes in the North Atlantic realm. We present high-resolution records of δ18O, δ13C values and Mg/Ca ratios. Changes in the Mg/Ca ratio are attributed to past meteoric precipitation variability. The stable C isotope composition of the speleothems most likely reflects changes in vegetation and precipitation, and variations in the δ18O signal are interpreted as variations in meteoric precipitation and temperature. We found cold and dry periods between 8 and 7 ka, 6.5 and 5.5 ka, 4 and 3 ka as well as between 0.7 and 0.2 ka. The proxy signals in the Bunker Cave stalagmites compare well with other isotope records and, thus, seem representative for central European Holocene climate variability. The prominent 8.2 ka event and the Little Ice Age cold events are both recorded in the Bunker Cave record. However, these events show a contrasting relationship between climate and δ18O, which is explained by different causes underlying the two climate anomalies. Whereas the Little Ice Age is attributed to a pronounced negative phase of the North Atlantic Oscillation, the 8.2 ka event was triggered by cooler conditions in the North Atlantic due to a slowdown of the thermohaline circulation.
Holocene climate was characterised by variability on multi-centennial to multi-decadal time scales. In central Europe, these fluctuations were most pronounced during winter. Here we present a new record of past winter climate variability for the last 10.8 ka based on four speleothems from Bunker Cave, Western Germany. Due to its central European location, the cave site is particularly well suited to record changes in precipitation and temperature in response to changes in the North Atlantic realm. We present high resolution records of δ18O, δ13C values and Mg/Ca ratios. We attribute changes in the Mg/Ca ratio to variations in the meteoric precipitation. The stable C isotope composition of the speleothems most likely reflects changes in vegetation and precipitation and variations in the δ18O signal are interpreted as variations in meteoric precipitation and temperature. We found cold and dry periods between 9 and 7 ka, 6.5 and 5.5 ka, 4 and 3 ka as well as between 0.7 to 0.2 ka. The proxy signals in our stalagmites compare well with other isotope records and, thus, seem representative for central European Holocene climate variability. The prominent 8.2 ka event and the Little Ice Age cold events are both recorded in the Bunker cave record. However, these events show a contrasting relationship between climate and δ18O, which is explained by different causes underlying the two climate anomalies. Whereas the Little Ice Age is attributed to a pronounced negative phase of the North Atlantic Oscillation, the 8.2 ka event was triggered by cooler conditions in the North Atlantic due to a slowdown of the Thermohaline Circulation.
Carbonate archives record a brief snapshot of the ambient Earth’s surface conditions at their deposition. However, the geologically reasonable extraction and interpretation of geochemical proxy data from ancient, diagenetically altered rock archives is fraught with problems. Three issues stand out: the dichotomy between petrographic and geochemical alteration; the lack of quantitative age constraints for specific diagenetic phases resulting in a poorly constrained admixture of local, basin-wide and over-regional (far-field) features; and an often insufficient understanding of the temperatures and compositions of diagenetic fluids. Here, the archive of Devonian marine limestones exposed to multiple far-field diagenetic events is used as an example to explore the above-listed issues. Methods applied include petrography, micro XRF, fluid inclusion data, clumped isotopes, δ13C and δ18O isotopes, 87Sr/86Sr ratios and quartz trace element data. Devonian limestones studied here were overprinted by two cross-cutting regional fault zones (T ≈ 230 °C) by multiple events between the Variscan Orogeny and the late Paleogene. The following processes are recorded: (i) protolith deposition and partial dolomitisation during rapid burial in the Middle/Late Devonian (T ≈ 180 °C); (ii) deep burial to ca 6.5 km and tectonic/hydrothermal overprint during the Variscan Orogeny in the Carboniferous (T ≈ 90–230 °C); (iii) rapid uplift to 1–2 km burial depth at the end of the Variscan Orogeny and hypogene karstification (T ≈ 50 to 100 °C) initiated by regional geology in the Permian/Triassic; (iv) tectonic/hydrothermal overprint during the opening of the Proto-Atlantic Ocean between the Early Jurassic and the Early Cretaceous (T ≈ 50 to 130 °C); (v) tectonic/hydrothermal overprint including renewed hypogene karstification and hydrothermal calcite cement precipitation (T ≈ 50 to 180 °C) during Alpine Orogeny between the Late Cretaceous and late Paleogene. Despite this complex series of diagenetic events, the protolith limestones largely preserved their respective Middle/Late Devonian dissolved inorganic carbon (DIC) and 87Sr/86Sr signatures. This study documents that geochemical proxy data, placed into their petrographic, paleotemperature, and local to over-regional context, significantly increases the ability to extract quantitative information from ancient carbonate rock archives. Research shown here has wider relevance for carbonate archive research in general.