Refine
Year of publication
Document Type
- Article (11)
- Contribution to a Periodical (10)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- ALL (1)
- AML (1)
- Chemiker (1)
- Dictyostelium discoideum (1)
- Frankfurt <Main> / Universität (1)
- MAP (1)
- MLL (1)
- Pharmazie (1)
- Phylogenetische Analyse (1)
- RNA-templated DNA repair (1)
Institute
Ahnenforschung unter sozialen Amöben : die morphologische Taxonomie muss umgeschrieben werden
(2007)
Seit fast 150 Jahren forschen Wissenschaftler aus aller Welt über den faszinierenden Wechsel zwischen Einzelligkeit und Vielzelligkeit im Lebenszyklus der »zellulären Schleimpilze«. Diese Forschung war bisher so erfolgreich, dass einem Vertreter der zellulären Schleimpilze, Dictyostelium discoideum, vom US-amerikanischen Gesundheitsministerium National Institutes of Health (NIH) ganz offiziell der Status eines Modellorganismus für biomedizinische Forschung verliehen wurde. Obwohl wir inzwischen glauben, viel über die »sozialen Amöben«, die sich bei Nahrungsmangel von Einzellern zu einem vielzelligen Verband zusammenlagern, gelernt zu haben, basiert unser Wissen doch fast ausschließlich auf Arbeiten mit der einen Art D. discoideum. Man kennt allerdings heute mehr als 100 Arten sozialer Amöben. Alle bilden multizelluläre Fruchtkörper aus, die aus Stielen und Sporenpaketen bestehen. Bisher ging man davon aus, dass die Spezies mit azellulären Stielen in ihren Fruchtkörpern phylogenetische Vorläufer der Vertreter mit zellulären Stielen sind, und dass die Vertreter mit verzweigten Fruchtkörpern näher mit sich selbst als mit den anderen sozialen Amöben verwandt sind. Diese Hypothesen wurden nun durch aktuelle molekulargenetische Analysen widerlegt.
Transcripts of NANOG and OCT4 have been recently identified in human t(4;11) leukemia and in a model system expressing both t(4;11) fusion proteins. Moreover, downstream target genes of NANOG/OCT4/SOX2 were shown to be transcriptionally activated. However, the NANOG1 gene belongs to a gene family, including a gene tandem duplication (named NANOG2 or NANOGP1) and several pseudogenes (NANOGP2-P11). Thus, it was unclear which of the NANOG family members were transcribed in t(4;11) leukemia cells. 5'-RACE experiments revealed novel 5'-exons of NANOG1 and NANOG2, which could give rise to the expression of two different NANOG1 and three different NANOG2 protein variants. Moreover, a novel PCR-based method was established that allows distinguishing between transcripts deriving from NANOG1, NANOG2 and all other NANOG pseudogenes (P2–P11). By applying this method, we were able to demonstrate that human hematopoietic stem cells and different leukemic cells transcribe NANOG2. Furthermore, we functionally tested NANOG1 and NANOG2 protein variants by recombinant expression in 293 cells. These studies revealed that NANOG1 and NANOG2 protein variants are functionally equivalent and activate a regulatory circuit that activates specific stem cell genes. Therefore, we pose the hypothesis that the transcriptional activation of NANOG2 represents a ‘gain-of-stem cell function’ in acute leukemia.
The C-module-binding factor (CbfA) is a multidomain protein that belongs to the family of jumonji-type (JmjC) transcription regulators. In the social amoeba Dictyostelium discoideum, CbfA regulates gene expression during the unicellular growth phase and multicellular development. CbfA and a related D. discoideum CbfA-like protein, CbfB, share a paralogous domain arrangement that includes the JmjC domain, presumably a chromatin-remodeling activity, and two zinc finger-like (ZF) motifs. On the other hand, the CbfA and CbfB proteins have completely different carboxy-terminal domains, suggesting that the plasticity of such domains may have contributed to the adaptation of the CbfA-like transcription factors to the rapid genome evolution in the dictyostelid clade. To support this hypothesis we performed DNA microarray and real-time RT-PCR measurements and found that CbfA regulates at least 160 genes during the vegetative growth of D. discoideum cells. Functional annotation of these genes revealed that CbfA predominantly controls the expression of gene products involved in housekeeping functions, such as carbohydrate, purine nucleoside/nucleotide, and amino acid metabolism. The CbfA protein displays two different mechanisms of gene regulation. The expression of one set of CbfA-dependent genes requires at least the JmjC/ZF domain of the CbfA protein and thus may depend on chromatin modulation. Regulation of the larger group of genes, however, does not depend on the entire CbfA protein and requires only the carboxy-terminal domain of CbfA (CbfA-CTD). An AT-hook motif located in CbfA-CTD, which is known to mediate DNA binding to A+T-rich sequences in vitro, contributed to CbfA-CTD-dependent gene regulatory functions in vivo.
Nach knapp vier Monaten Corona-Krise stellen sich auch der Wissenschaft viele Fragen: Sind bestimmte Teile der Gesellschaft stärker von den Folgen betroffen, klafft eine Gerechtigkeitslücke? Öffnen sich vielleicht aber auch Wege für neue medizinische, gesellschaftliche, wirtschaftliche und ökologische Ansätze? Forscherinnen und Forscher der Goethe-Universität aus verschiedenen Disziplinen wagen eine Zwischenbilanz und einen Ausblick.
We among others have recently demonstrated that normal cells produce “fusion mRNAs”. These fusion mRNAs do not derive from rearranged genomic loci, but rather they are derived from “early-terminated transcripts” (ETTs). Premature transcriptional termination takes place in intronic sequences that belong to “breakpoint cluster regions”. One important property of ETTs is that they exhibit an unsaturated splice donor site. This results in: (1) splicing to “cryptic exons” present in the final intron; (2) Splicing to another transcript of the same gene (intragenic trans-splicing), resulting in “exon repetitions”; (3) splicing to a transcript of another gene (intergenic trans-splicing), leading to “non-genomically encoded fusion transcripts” (NGEFTs). These NGEFTs bear the potential risk to influence DNA repair processes, since they share identical nucleotides with their DNA of origin, and thus, could be used as “guidance RNA” for DNA repair processes. Here, we present experimental data about four other genes. Three of them are associated with hemato-malignancies (ETV6, NUP98 and RUNX1), while one is associated with solid tumors (EWSR1). Our results demonstrate that all genes investigated so far (MLL, AF4, AF9, ENL, ELL, ETV6, NUP98, RUNX1 and EWSR1) display ETTs and produce transpliced mRNA species, indicating that this is a genuine property of translocating genes.