Refine
Year of publication
Document Type
- Article (51)
- Preprint (24)
- Conference Proceeding (1)
- Working Paper (1)
Language
- English (77)
Has Fulltext
- yes (77)
Is part of the Bibliography
- no (77)
Keywords
- Charge fluctuations (1)
- QGP (1)
- Relativistic heavy-ion collisions (1)
Institute
- Physik (76)
We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrt[sNN]=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5<pT<12 GeV/c. The collision energy dependence of the yields and the centrality and pT dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of pT-dependent suppression, which may be expected from models incorporating jet attenuation in cold nuclear matter or scattering of fragmentation hadrons.
We report results on rho (770)0--> pi + pi - production at midrapidity in p+p and peripheral Au+Au collisions at sqrt[sNN]=200 GeV. This is the first direct measurement of rho (770)0--> pi + pi - in heavy-ion collisions. The measured rho 0 peak in the invariant mass distribution is shifted by ~40 MeV/c2 in minimum bias p+p interactions and ~70 MeV/c2 in peripheral Au+Au collisions. The rho 0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho 0 meson mass, width, and shape due to phase space and dynamical effects are discussed.
Transverse energy ( ET ) distributions have been measured for Au+Au collisions at sqrt[sNN ]=200 GeV by the STAR Collaboration at RHIC. ET is constructed from its hadronic and electromagnetic components, which have been measured separately. ET production for the most central collisions is well described by several theoretical models whose common feature is large energy density achieved early in the fireball evolution. The magnitude and centrality dependence of ET per charged particle agrees well with measurements at lower collision energy, indicating that the growth in ET for larger collision energy results from the growth in particle production. The electromagnetic fraction of the total ET is consistent with a final state dominated by mesons and independent of centrality.
The results from the STAR Collaboration on directed flow (v1), elliptic flow (v2), and the fourth harmonic (v4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrt[sNN]=200GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a blast-wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v2, scaling with the number of constituent quarks and parton coalescence are discussed. For v4, scaling with v22 and quark coalescence are discussed.
We present STAR measurements of charged hadron production as a function of centrality in Au+Au collisions at sqrt[sNN ]=130 GeV . The measurements cover a phase space region of 0.2< pT <6.0 GeV/c in transverse momentum and -1< eta <1 in pseudorapidity. Inclusive transverse momentum distributions of charged hadrons in the pseudorapidity region 0.5< | eta | <1 are reported and compared to our previously published results for | eta | <0.5 . No significant difference is seen for inclusive pT distributions of charged hadrons in these two pseudorapidity bins. We measured dN/d eta distributions and truncated mean pT in a region of pT > pcutT , and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured pT region. The relative importance of hard scattering processes is investigated through binary scaling fraction of particle production.
We present data on e+ e- pair production accompanied by nuclear breakup in ultraperipheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order diagrams for pair production should be enhanced. We compare the data with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED). The data distributions agree with both calculations, except that the pair transverse momentum spectrum disagrees with the equivalent photon approach. We set limits on higher-order contributions to the cross section.
Azimuthally sensitive Hanbury Brown-Twiss interferometry in Au+Au collisions at sqrt[sNN]=200 GeV
(2004)
We present the results of a systematic study of the shape of the pion distribution in coordinate space at freeze-out in Au+Au collisions at BNL RHIC using two-pion Hanbury Brown-Twiss (HBT) interferometry. Oscillations of the extracted HBT radii versus emission angle indicate sources elongated perpendicular to the reaction plane. The results indicate that the pressure and expansion time of the collision system are not sufficient to completely quench its initial shape.
The pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d+Au collisions at sqrt[sNN ]=200 GeV are presented. The charged particle density at midrapidity, its pseudorapidity asymmetry, and centrality dependence are reasonably reproduced by a multiphase transport model, by HIJING, and by the latest calculations in a saturation model. Ratios of transverse momentum spectra between backward and forward pseudorapidity are above unity for pT below 5 GeV/c . The ratio of central to peripheral spectra in d+Au collisions shows enhancement at 2< pT <6 GeV/c , with a larger effect at backward rapidity than forward rapidity. Our measurements are in qualitative agreement with gluon saturation and in contrast to calculations based on incoherent multiple partonic scatterings.
Midrapidity open charm spectra from direct reconstruction of D0(D0-bar)-->K± pi ± in d+Au collisions and indirect electron-positron measurements via charm semileptonic decays in p+p and d+Au collisions at sqrt[sNN]=200 GeV are reported. The D0(D0-bar) spectrum covers a transverse momentum (pT) range of 0.1<pT<3 GeV/c, whereas the electron spectra cover a range of 1<pT<4 GeV/c. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at midrapidity for open charm production from d+Au collisions at BNL RHIC is d sigma NNcc-bar/dy=0.30±0.04(stat)±0.09(syst) mb. The results are compared to theoretical calculations. Implications for charmonium results in A+A collisions are discussed.
Correlations in the hadron distributions produced in relativistic Au+Au collisions are studied in the discrete wavelet expansion method. The analysis is performed in the space of pseudorapidity (| eta | <= 1) and azimuth(full 2 pi ) in bins of transverse momentum (pt) from 0.14 <= pt <= 2.1GeV/c. In peripheral Au+Au collisions a correlation structure ascribed to minijet fragmentation is observed. It evolves with collision centrality and pt in a way not seen before, which suggests strong dissipation of minijet fragmentation in the longitudinally expanding medium.