Refine
Document Type
- Article (9)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- EPR (2)
- PELDOR (2)
- Computational Biology (1)
- DEER (1)
- EPR spectroscopy (1)
- Molecular Physiology of the Cell Membrane (1)
- PELDOR/DEER (1)
- PELDOR/DEER spectroscopy (1)
- Protein Structure and Dynamics (1)
- RNA structures (1)
Institute
- Biochemie und Chemie (8)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (6)
- MPI für Biophysik (2)
- Biochemie, Chemie und Pharmazie (1)
- Biowissenschaften (1)
- Center for Membrane Proteomics (CMP) (1)
- Exzellenzcluster Makromolekulare Komplexe (1)
- Physik (1)
- Starker Start ins Studium: Qualitätspakt Lehre (1)
In the title compound, C30H34N2O6, the complete molecule is generated by a crystallographic 2/m symmetry operation. The 1-oxyl-3-pyrroline-3-carboxylate group lies on a mirror plane. The dihedral angle between the ring planes of the biphenyl fragment is constrained by symmetry to be zero, resulting in rather short intramolecular H...H contact distances of 2.02 Å. In the crystal, molecules are connected along the a-axis direction by very weak intermolecular methyl-phenyl C-H...[pi] interactions. The C-H bond is not directed to the center of the benzene ring, but mainly to one C atom [C-H...C(x - 1, y, z): H...C = 2.91 Å and C-H...C = 143°]. Key indicators: single-crystal X-ray study; T = 169 K; mean σC–C) = 0.002 Å ; R factor = 0.049; wR factor = 0.126; data-to-parameter ratio = 19.8.
PELDOR (pulse electron-electron double resonance) is an established method to study intramolecular distances and can give evidence for conformational changes and flexibilities. However, it can also be used to study intermolecular interactions as for example oligerimization. Here, we used PELDOR to study the ‘end-to-end’ stacking of small double stranded (ds)RNAs. For this study, the dsRNA molecules were only singly labelled with the spin label TPA to avoid multi-spin effects and to measure only the intermolecular stacking interactions. It can be shown that small dsRNAs tend to assemble to rod-like structures due to π-π-interactions between the base pairs at the end of the strands. On the one hand, these interactions can influence or complicate measurements aimed at the determining of the structure and dynamics of the dsRNA molecule itself. On the other hand, it can be interesting to study such intermolecular stacking interactions in more detail, as for example their dependence on ion concentration. We quantitatively determined the stacking probability as a function of the monovalent NaCl salt and the dsRNA concentration. From this data the dissociation constant Kd was deduced and found to depend on the ratio between the NaCl salt and dsRNA concentrations. Additionally, the distances and distance distributions obtained predict a model for the stacking geometry of dsRNAs. Introducing a nucleotide overhangs at one end of the dsRNA molecule restricts the stacking to the other end, leading only to dimer formations. Introducing such an overhang at both ends of the dsRNA molecule fully suppresses stacking, as we could demonstrate by PELDOR experiments quantitatively.
The title molecule, C34H28I4·4C6H6, has crystallographic 4 symmetry and crystallizes with four symmetry-related benzene solvent molecules. The phenyl group is eclipsed with one of the adamantane C—C bonds. The tetraphenyladamantane units and the benzene solvent molecules are connected by weak intermolecular phenyl–benzene C—H⋯π and benzene–benzene C—H⋯π interactions. In the crystal, molecules are linked along the c-axis direction via the iodophenyl groups by a combination of weak intermolecular I⋯I [3.944 (1) Å] and I⋯π(phenyl) [3.608 (6) and 3.692 (5) Å] interactions.
Relative orientation of POTRA domains from cyanobacterial Omp85 studied by pulsed EPR spectroscopy
(2016)
Many proteins of the outer membrane of Gram-negative bacteria and of the outer envelope of the endosymbiotically derived organelles mitochondria and plastids have a β-barrel fold. Their insertion is assisted by membrane proteins of the Omp85-TpsB superfamily. These proteins are composed of a C-terminal β-barrel and a different number of N-terminal POTRA domains, three in the case of cyanobacterial Omp85. Based on structural studies of Omp85 proteins, including the five POTRA-domain-containing BamA protein of Escherichia coli, it is predicted that anaP2 and anaP3 bear a fixed orientation, whereas anaP1 and anaP2 are connected via a flexible hinge. We challenged this proposal by investigating the conformational space of the N-terminal POTRA domains of Omp85 from the cyanobacterium Anabaena sp. PCC 7120 using pulsed electron-electron double resonance (PELDOR, or DEER) spectroscopy. The pronounced dipolar oscillations observed for most of the double spin-labeled positions indicate a rather rigid orientation of the POTRA domains in frozen liquid solution. Based on the PELDOR distance data, structure refinement of the POTRA domains was performed taking two different approaches: 1) treating the individual POTRA domains as rigid bodies; and 2) using an all-atom refinement of the structure. Both refinement approaches yielded ensembles of model structures that are more restricted compared to the conformational ensemble obtained by molecular dynamics simulations, with only a slightly different orientation of N-terminal POTRA domains anaP1 and anaP2 compared with the x-ray structure. The results are discussed in the context of the native environment of the POTRA domains in the periplasm.
The tetracycline-binding RNA aptamer (TC-aptamer) is a synthetic riboswitch that binds the antibiotic tetracycline (TC) with exceptionally high affinity. Although a crystal structure exists of the TC-bound state, little is known about the conformational dynamics and changes upon ligand binding. In this study, pulsed electron paramagnetic resonance techniques for measuring distances (PELDOR) in combination with rigid nitroxide spin labels (Çm spin label) were used to investigate the conformational flexibility of the TC-aptamer in the presence and absence of TC at different Mg2+ concentrations. TC was found to be the essential factor for stabilizing the tertiary structure at intermediate Mg2+ concentrations. At higher Mg2+ concentrations, Mg2+ alone is sufficient to stabilize the tertiary structure. In addition, the orientation of the two spin-labeled RNA helices with respect to each other was analyzed with orientation-selective PELDOR and compared to the crystal structure. These results demonstrate for the first time the unique value of the Çm spin label in combination with PELDOR to provide information about conformational flexibilities and orientations of secondary structure elements of biologically relevant RNAs.
Mechanistic understanding of dynamic membrane proteins such as transporters, receptors, and channels requires accurate depictions of conformational ensembles, and the manner in which they interchange as a function of environmental factors including substrates, lipids, and inhibitors. Spectroscopic techniques such as electron spin resonance (ESR) pulsed electron–electron double resonance (PELDOR), also known as double electron–electron resonance (DEER), provide a complement to atomistic structures obtained from x-ray crystallography or cryo-EM, since spectroscopic data reflect an ensemble and can be measured in more native solvents, unperturbed by a crystal lattice. However, attempts to interpret DEER data are frequently stymied by discrepancies with the structural data, which may arise due to differences in conditions, the dynamics of the protein, or the flexibility of the attached paramagnetic spin labels. Recently, molecular simulation techniques such as EBMetaD have been developed that create a conformational ensemble matching an experimental distance distribution while applying the minimal possible bias. Moreover, it has been proposed that the work required during an EBMetaD simulation to match an experimentally determined distribution could be used as a metric with which to assign conformational states to a given measurement. Here, we demonstrate the application of this concept for a sodium-coupled transport protein, BetP. Because the probe, protein, and lipid bilayer are all represented in atomic detail, the different contributions to the work, such as the extent of protein backbone movements, can be separated. This work therefore illustrates how ranking simulations based on EBMetaD can help to bridge the gap between structural and biophysical data and thereby enhance our understanding of membrane protein conformational mechanisms.
The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus lævis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.
To facilitate the measurement of intramolecular distances in solvated RNA systems, a combination of spin-labeling, electron paramagnetic resonance (EPR), and molecular dynamics (MD) simulation is presented. The fairly rigid spin label 2,2,5,5-tetramethyl-pyrrolin-1-yloxyl-3-acetylene (TPA) was base and site specifically introduced into RNA through a Sonogashira palladium catalyzed crosscoupling on column. For this purpose 5-iodouridine, 5-iodo-cytidine and 2-iodo-adenosine phosphoramidites were synthesized and incorporated into RNA-sequences. Application of the recently developed ACE (R) chemistry presented the main advantage to limit the reduction of the nitroxide to an amine during the oligonucleotide automated synthesis and thus to increase substantially the reliability of the synthesis and the yield of labeled oligonucleotides. 4-Pulse Electron Double Resonance (PELDOR) was then successfully used to measure the intramolecular spin–spin distances in six doubly labeled RNA-duplexes. Comparison of these results with our previous work on DNA showed that A- and B-Form can be differentiated. Using an all-atom force field with explicit solvent, MD simulations gave results in good agreement with the measured distances and indicated that the RNA A-Form was conserved despite a local destabilization effect of the nitroxide label. The applicability of the method to more complex biological systems is discussed.
TEMPO spin labels protected with 2-nitrobenzyloxymethyl groups were attached to the amino residues of three different nucleosides: deoxycytidine, deoxyadenosine, and adenosine. The corresponding phosphoramidites could be incorporated by unmodified standard procedures into four different self-complementary DNA and two RNA oligonucleotides. After photochemical removal of the protective group, elimination of formic aldehyde and spontaneous air oxidation, the nitroxide radicals were regenerated in high yield. The resulting spin-labeled palindromic duplexes could be directly investigated by PELDOR spectroscopy without further purification steps. Spin–spin distances measured by PELDOR correspond well to the values obtained from molecular models.