Refine
Year of publication
Document Type
- Article (35)
- Preprint (3)
- Working Paper (1)
Has Fulltext
- yes (39)
Is part of the Bibliography
- no (39)
Keywords
- climate change (3)
- global change (3)
- Biodiversity (2)
- aDGVM (2)
- biodiversity (2)
- biodiversity protection (2)
- conservation funding (2)
- conservation planning (2)
- decision making (2)
- post-2020 biodiversity targets (2)
Institute
- Senckenbergische Naturforschende Gesellschaft (26)
- Geowissenschaften (24)
- Biodiversität und Klima Forschungszentrum (BiK-F) (21)
- Biowissenschaften (12)
- Institut für Ökologie, Evolution und Diversität (7)
- Geographie (4)
- Geowissenschaften / Geographie (3)
- Informatik (1)
- Kulturwissenschaften (1)
- Universitätsbibliothek (1)
BIOfid is a specialized information service currently being developed to mobilize biodiversity data dormant in printed historical and modern literature and to offer a platform for open access journals on the science of biodiversity. Our team of librarians, computer scientists and biologists produce high-quality text digitizations, develop new text-mining tools and generate detailed ontologies enabling semantic text analysis and semantic search by means of user-specific queries. In a pilot project we focus on German publications on the distribution and ecology of vascular plants, birds, moths and butterflies extending back to the Linnaeus period about 250 years ago. The three organism groups have been selected according to current demands of the relevant research community in Germany. The text corpus defined for this purpose comprises over 400 volumes with more than 100,000 pages to be digitized and will be complemented by journals from other digitization projects, copyright-free and project-related literature. With TextImager (Natural Language Processing & Text Visualization) and TextAnnotator (Discourse Semantic Annotation) we have already extended and launched tools that focus on the text-analytical section of our project. Furthermore, taxonomic and anatomical ontologies elaborated by us for the taxa prioritized by the project’s target group - German institutions and scientists active in biodiversity research - are constantly improved and expanded to maximize scientific data output. Our poster describes the general workflow of our project ranging from literature acquisition via software development, to data availability on the BIOfid web portal (http://biofid.de/), and the implementation into existing platforms which serve to promote global accessibility of biodiversity data.
The Eastern Steppe of Mongolia is one of the world's largest mostly intact grassland ecosystems and is characterised by a close coupling of societal and natural processes. In this ecosystem, mobility is one of the key characteristics of wildlife and human societies alike. The current economic development of Mongolia is accompanied by extensive societal transformation and changes in nomadic lifestyles, which potentially affects the unique steppe ecosystem and its biodiversity. The changing lifestyles are mainly characterised by rural-urban migration, resulting in reduced mobility of herders and their livestock, and presumably affecting wildlife. The question is how mobility can be fostered under these transformation processes. Time is pressing as a new generation is born which is growing up in urban environments and with new skill sets but a potential loss of the tight connection to nature and the nomadic lifestyle.
The establishment and maintenance of protected areas (PAs) is viewed as a key action in delivering post-2020 biodiversity targets. PAs often need to meet multiple objectives, ranging from biodiversity protection to ecosystem service provision and climate change mitigation, but available land and conservation funding is limited. Therefore, optimizing resources by selecting the most beneficial PAs is vital. Here, we advocate for a flexible and transparent approach to selecting protected areas based on multiple objectives, and illustrate this with a decision support tool on a global scale. The tool allows weighting and prioritization of different conservation objectives according to user-specified preferences, as well as real-time comparison of the selected areas that result from such different priorities. We apply the tool across 1347 terrestrial PAs and highlight frequent trade-offs among different objectives, e.g., between species protection and ecosystem integrity. Outputs indicate that decision makers frequently face trade-offs among conflicting objectives. Nevertheless, we show that transparent decision-support tools can reveal synergies and trade-offs associated with PA selection, thereby helping to illuminate and resolve land-use conflicts embedded in divergent societal and political demands and values.
The establishment and maintenance of protected areas(PAs) is viewed as a key action in delivering post-2020 biodiversity targets. PAs often need to meet a multitude of objectives, ranging from biodiversity protection to ecosystem service provision and climate change mitigation. As available land and conservation funding are limited, optimizing resources by selecting the most beneficial PAs is vital. Here we present a decision support tool that enables a flexible approach to PA selection on a global scale, allowing different conservation objectives to be weighted and prioritized according to user-specified preferences. We apply the tool across 1347 terrestrial PAs and highlight frequent trade-offs among different objectives, e.g., between biodiversity protection and ecosystem integrity. These results indicate that decision makers must usually decide among conflicting objectives. To assist this our decision support tool provides an explicitly value-based approach that can help resolve such conflicts by considering divergent societal and political demands and values.
Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.
Establishing and maintaining protected areas (PAs) is a key action in delivering post-2020 biodiversity targets. PAs often need to meet multiple objectives, ranging from biodiversity protection to ecosystem service provision and climate change mitigation, but available land and conservation funding is limited. Therefore, optimizing resources by selecting the most beneficial PAs is vital. Here, we advocate for a flexible and transparent approach to selecting PAs based on multiple objectives, and illustrate this with a decision support tool on a global scale. The tool allows weighting and prioritization of different conservation objectives according to user-specified preferences as well as real-time comparison of the outcome. Applying the tool across 1,346 terrestrial PAs, we demonstrate that decision makers frequently face trade-offs among conflicting objectives, e.g., between species protection and ecosystem integrity. Nevertheless, we show that transparent decision support tools can reveal synergies and trade-offs associated with PA selection, thereby helping to illuminate and resolve land-use conflicts embedded in divergent societal and political demands and values.
Vegetation responds to drought through a complex interplay of plant hydraulic mechanisms, posing challenges for model development and parameterization. We present a mathematical model that describes the dynamics of leaf water-potential over time while considering different strategies by which plant species regulate their water-potentials. The model has two parameters: the parameter λ describing the adjustment of the leaf water potential to changes in soil water potential, and the parameter Δψww describing the typical ‘well-watered’ leaf water potentials at non-stressed (near-zero) levels of soil water potential. Our model was tested and calibrated on 110 time-series datasets containing the leaf- and soil water potentials of 66 species under drought and non-drought conditions. Our model successfully reproduces the measured leaf water potentials over time based on three different regulation strategies under drought. We found that three parameter sets derived from the measurement data reproduced the dynamics of 53% of an drought dataset, and 52% of a control dataset [root mean square error (RMSE) < 0.5 MPa)]. We conclude that, instead of quantifying water-potential-regulation of different plant species by complex modeling approaches, a small set of parameters may be sufficient to describe the water potential regulation behavior for large-scale modeling. Thus, our approach paves the way for a parsimonious representation of the full spectrum of plant hydraulic responses to drought in dynamic vegetation models.
Biodiversity post-2020: Closing the gap between global targets and national-level implementation
(2021)
National and local governments need to step up efforts to effectively implement the post-2020 global biodiversity framework of the Convention on Biological Diversity to halt and reverse worsening biodiversity trends. Drawing on recent advances in interdisciplinary biodiversity science, we propose a framework for improved implementation by national and subnational governments. First, the identification of actions and the promotion of ownership across stakeholders need to recognize the multiple values of biodiversity and account for remote responsibility. Second, cross-sectorial implementation and mainstreaming should adopt scalable and multifunctional ecosystem restoration approaches and target positive futures for nature and people. Third, assessment of progress and adaptive management can be informed by novel biodiversity monitoring and modeling approaches handling the multidimensionality of biodiversity change.
Die Bestände des in Deutschland stark gefährdeten Sand-Zwerggrases Mibora minima, für deren Erhalt das Land Hessen eine besondere Verantwortung trägt, gehen seit vielen Jahren zurück. In dieser Arbeit wurden als Beitrag zum Artenhilfsprogramm der Botanischen Vereinigung für Naturschutz in Hessen (BVNH) die noch vorhandenen Populationen erfasst sowie die botanischen und edaphischen Gegebenheiten an den Standorten untersucht. Dabei wurde durch Vergleich von Flächen mit und ohne Bewuchs des Zwerggrases der Frage nachgegangen, ob und inwieweit die Verbreitung der Art durch die Beschaffenheit und Nährstoffversorgung des Bodens bestimmt wird. Es wurde ein weiterer deutlicher Rückgang der südhessischen Populationen um etwa 60 % seit 1999 festgestellt, der am stärksten die Standorte um Mörfelden-Walldorf betrifft. Dagegen haben sich die Bestände bei Rüsselsheim-Königstädten möglicherweise durch Pflegemaßnahmen stabilisiert. Ein bestimmender Einfluss edaphischer Parameter auf die Verteilung der Art innerhalb der kalkfreien Flugsande konnte nicht festgestellt werden. Der indigene floristische Status der Art wird in Frage gestellt und stattdessen ihre Einstufung als Epökophyt westmediterraner Herkunft angenommen.