Refine
Document Type
- Article (1)
- Conference Proceeding (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- FGFR (1)
- PD-L1 (1)
- immune checkpoint inhibitor (ICI) (1)
- immunohistochemistry (1)
- immunotherapy (1)
- tyrosine kinase inhibitor (TKI) (1)
Institute
- Georg-Speyer-Haus (1)
- Medizin (1)
Background: Treatment options for poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is approved for advanced radioiodine refractory thyroid carcinoma, but response to single agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor pembrolizumab (PEM) are promising. Materials and Methods: Primary ATC (n=93) and PDTC (n=47) tissue samples diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1 expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4 mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization. Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls. Disease specific survival (DSS) was the primary outcome variable. Results: PD-L1 TPS≥50% was observed in 42% of ATC and 26% of PDTC specimens. Mean PD-L1 expression was significantly higher in ATC (TPS 30%) than in PDTC (5%; p<0.01) and NT (0%, p<0.001). 53% of PDTC samples had PD-L1 expression ≤5%. FGFR mRNA expression was generally low in all samples but combined FGFR1-4 expression was significantly higher in PDTC and ATC compared to NT (each p<0.001). No impact of PD-L1 and FGFR 1-4 expression was observed on DSS. Conclusion: High tumoral expression of PD-L1 in a large proportion of ATCs and a subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR expression is low thyroid tumor cells. The clinically observed synergism of PEM with LEN may be caused by immune modulation.
Survivin functions as an apoptosis inhibitor and a regulator of cell division during development and tumorigenesis. Since survivin is a highly relevant target for tumor therapy, we investigated whether interference with it’s dynamic cellular localization represents a novel strategy to inhibit survivin’s cancer promoting functions. We confirmed survivin overexpression in head and neck as well as in colorectal cancers and identified an evolutionary conserved Crm1-dependent nuclear export signal (NES) in survivin. Importantly, nuclear export was required for survivin mediated protection against chemo- and radiotherapy-induced apoptosis by securing efficient interference with cytoplasmic caspases. In dividing cells, the NES was required for tethering of survivin and of the survivin/Aurora-B kinase complex to the mitotic machinery, which was inevitable for proper cell division. The clinical relevance of our findings was supported by showing that preferential nuclear localization of survivin correlated with enhanced survival in a cohort of colorectal cancer patients. Targeting survivin’s nuclear export by the application of NES-specific antibodies promoted its nuclear accumulation and inhibited its cytoprotective function. We here show that nuclear export is essential for the tumor promoting activities of survivin and encourage the identification of chemical inhibitors to specifically interfere with survivin’s nuclear export as a novel class of anticancer therapeutics.