Refine
Document Type
- Article (11)
- Preprint (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- SARS-CoV-2 (2)
- Afrotheria (1)
- Animal phylogenetics (1)
- Antisense-Oligonucleotide (1)
- Covid-19 (1)
- Electron-pion identification (1)
- Elephants (1)
- Eutheria (1)
- Fibre/foam sandwich radiator (1)
- Gallensäurederivate (1)
Institute
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p–Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
Biodiversity post-2020: Closing the gap between global targets and national-level implementation
(2021)
National and local governments need to step up efforts to effectively implement the post-2020 global biodiversity framework of the Convention on Biological Diversity to halt and reverse worsening biodiversity trends. Drawing on recent advances in interdisciplinary biodiversity science, we propose a framework for improved implementation by national and subnational governments. First, the identification of actions and the promotion of ownership across stakeholders need to recognize the multiple values of biodiversity and account for remote responsibility. Second, cross-sectorial implementation and mainstreaming should adopt scalable and multifunctional ecosystem restoration approaches and target positive futures for nature and people. Third, assessment of progress and adaptive management can be informed by novel biodiversity monitoring and modeling approaches handling the multidimensionality of biodiversity change.
Potentilla heptaphylla gehört in Hessen zu den oft verkannten Arten. Durch Herbarbelege bestätigt sind Vorkommen bei Niederkleen, Münzenberg sowie in Nordhessen um Korbach und Waldeck. Für diese Vorkommen konnte die diploide Chromosomenzahl von 2n = 14 bestätigt werden. Ein Vorkommen im Frankfurter Wald ist erloschen. In Nordhessen wurden außerdem tetraploide Pflanzen festgestellt, bei denen es sich eventuell um Bastarde zwischen Potentilla heptaphylla und P. neumanniana handelt.
Background and Aims: The prevalence of hepatitis C virus (HCV) antibodies in Germany has been estimated to be in the range of 0.4–0.63%. Screening for HCV is recommended in patients with elevated ALT levels or significant risk factors for HCV transmission only. However, 15–30% of patients report no risk factors and ALT levels can be normal in up to 20–30% of patients with chronic HCV infection. The aim of this study was to assess the HCV seroprevalence in patients visiting two tertiary care emergency departments in Berlin and Frankfurt, respectively.
Methods: Between May 2008 and March 2010, a total of 28,809 consecutive patients were screened for the presence of anti-HCV antibodies. Anti-HCV positive sera were subsequently tested for HCV-RNA.
Results: The overall HCV seroprevalence was 2.6% (95% CI: 2.4–2.8; 2.4% in Berlin and 3.5% in Frankfurt). HCV-RNA was detectable in 68% of anti-HCV positive cases. Thus, the prevalence of chronic HCV infection in the overall study population was 1.6% (95% CI 1.5–1.8). The most commonly reported risk factor was former/current injection drug use (IDU; 31.2%) and those with IDU as the main risk factor were significantly younger than patients without IDU (p<0.001) and the male-to-female ratio was 72% (121 vs. 46 patients; p<0.001). Finally, 18.8% of contacted HCV-RNA positive patients had not been diagnosed previously.
Conclusions: The HCV seroprevalence was more than four times higher compared to current estimates and almost one fifth of contacted HCV-RNA positive patients had not been diagnosed previously.
In den vergangenen Jahren wurden in der AntisenseTechnologie grundlegende Hürden genommen, die eine Arzneimittelentwicklung auf Nukleinsäurebasis ermöglichen. Hierzu zählt vor allem die Gewährleistung einer ausreichenden metabolischen Stabilität und die Synthese im technischen Maßstab. In zahlreichen klinischen Studien wurde der Wirksamkeitsnachweis am Menschen erbracht. Als sequenzspezifische Therapeutika zeichnen sich Antisense Oligonukleotide im Vergleich zu vielen anderen Wirkstoffen dadurch aus, daß sie spezifisch mit einer RNAZielsequenz hybridisieren, ohne dabei wichtige zelluläre Funktionen zu beeinträchtigen. Neben krankheitsauslösenden Genen können Antisense Oligonukleotide auch virale Gene blockieren und nach Aktivierung der Ribonuklease H hydrolysieren. Das erste Präparat auf Oligonukleotidbasis wurde 1998 zugelassen und hemmt erfolgreich die Vermehrung des Cytomegalievirus. Hepatitis C ist eine Virusinfektion, die momentan nur unzureichend therapiert werden kann. Seit Mitte der neunziger Jahre wird nach geeigneten Antisense Oligonukleotiden und Ribozymen gesucht, um die Heilungschancen bei einer chronischen HCVInfektion zu verbessern. Im Rahmen dieser Arbeit wurde durch experimentelles Screening eine potente Zielsequenz (tS13) im Bereich der internen ribosomalen Angriffsstelle (IRES) und des Startcodons für die Proteinbiosynthese des HCV gefunden (Nukleotide 326342 des HCV Genoms). Hierzu wurde die Sequenz eines bereits bekannten 23mer Antisense Oligonukleotids durch systematisches Verkürzen auf 17 Nukleotide reduziert, ohne in vitro an Inhibitionspotential einzubüßen. Erst weitere Verkürzungen führten zu einer deutlichen Abnahme der Antisense Wirkung. Eine Schwierigkeit bei der therapeutischen Anwendung von polyanionischen Antisense Oligonukleotiden ist deren begrenzte zelluläre Aufnahme. Wie in Kapitel 3 dargelegt, wurden bislang zahlreiche Methoden zur Verbesserung der Membrangängigkeit dieser Wirkstoffklasse entwickelt. Zur Evaluierung eines leberselektiven Transports (engl.: drug targeting) und zur Steigerung der hepatozellulären Aufnahme (engl.: cell uptake) wurde das antiviral wirkende 17mer Antisense Oligonukleotid tS13 mit Biomolekülen wie den Gallensäuren, die im enterohepatischen Kreislauf das Zielorgan Leber passieren, kovalent verknüpft. Die Kupplung erfolgte dabei über die für die zelluläre Aufnahme nicht essentielle 3aHydroxylgruppe der Cholsäure und Taurocholsäure. Die Gallensäuren wurden entsprechend geschützt, in die Phosphoramidite 22a/b und 27a/b überführt und im letzten Kupplungsschritt der Festphasensynthese an das 5