Refine
Document Type
- Bachelor Thesis (1)
- Doctoral Thesis (1)
- Master's Thesis (1)
Language
- German (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Physik (3)
Die vorliegende Arbeit beschäftigt sich mit optischen und elektrischen Untersuchungen an einer koaxial aufgebauten Lorentz-Drift-Geometrie. So wurden Messungen an der Lorentz-Drift-Sputterquelle bezüglich der Durchbruchspannung durchgeführt. Es hat sich gezeigt, dass das Verhalten der Durchbruchspannung in Abhängigkeit vom Druck trotz der koaxialen Elektrodengeometrie vergleichbar mit der Paschenkurve fur eine planparallele Anordnung ist.
Zur Untersuchung des Sputterverhaltens wurden zunächst einige Kurzzeitaufnahmen mit einer Belichtungszeit im Mikrosekundenbereich durchgefuhrt, um so die Ausbreitung der Plasmawolke zu betrachten. Bei einem Durchbruch führt der Stromfluss zu einem Magnetfeld, sodass ein Lorentz-Drift entsteht. Durch die resultierende Kraft wird das Plasma beschleunigt.
Es zeigt sich, dass sich die Plasmawolke mit zunehmender Zeit bzw. zunehmendem Abstand von den Elektroden homogener im Rezipient verteilt. Da durch die Ausbreitung der Plasmafront auch ausgelöstes Elektrodenmaterial zu einem entsprechend platzierten Substrat beschleunigt wird, lagert sich dort eine dünne Schicht an.
Die Ablagerungen am Substrat wurden bei verschiedenen Drucken und verschiedenen Abständen zu den Elektroden betrachtet. Erste Messungen zeigen, dass die Schichten mit größerem Abstand homogener werden und besser am Substrat haften bleiben, jedoch die Schichtdicke geringer wird. Bei geringem Abstand lagern sich vergleichsweise dicke Schichten an, die jedoch sehr inhomogen und instabil sind. Durch Optimierung sollte es aber möglich sein, einen gewünschten Kompromiss aus Schichtdicke, Stabilität und Homogenität zu finden.
Bei niedrigeren Drucken und somit hohen Durchbruchspannungen kommt es aufgrund der höheren Stromdichte zu stärkeren Lorentz-Drifts, sodass die Teilchenenergien im Plasma steigen und es zu dickeren Ablagerungen kommt.
Die Schlussfolgerung dieser Arbeit ist, dass die Beschichtung durch eine Lorentz-Drift-Geometrie prinzipiell möglich ist. Es konnten bisher qualitative Messungen durchgeführt werden, die jedoch noch quantitativ verifiziert werden sollten.
In der vorliegenden Arbeit wurden Messungen zur Plasmadynamik eines Lorentz-Drift- Beschleunigers (LDB) durchgeführt. Dieser basiert auf einer koaxialen Elektrodengeometrie. Bei einem Überschlag führt der entstehende Stromfluss zu einemMagnetfeld, sodass die gebildeten Ladungsträger durch die resultierende Lorentzkraft beschleunigt werden. Es hat sich gezeigt, dass die Abhängigkeit von Durchbruchspannung und Druck dem charakteristischen Verlauf einer Paschenkurve folgt.
Die Strom-Spannungs-Charakteristik des Versuchsaufbaus wurde in Konfigurationen mit und ohne Funkenstrecke untersucht. Mit Hilfe von diesem als Schalter fungierenden Spark-Gaps konnte bei Durchbruchspannungen gemessen werden, die oberhalb des Selbstdurchbruchs liegen.
Es zeigte sich, dass die im Versuchaufbau verwendete Funkenstrecke keinen wesentlichen Einfluss auf die Entladung hat. Es kommt an der Funkenstrecke lediglich zu einem Spannungsabfall im Bereich einiger hundert Volt, der den Verlauf derEntladung im LDB allerdings nicht beeinflusst.
Der Lorentz-Drift-Beschleuniger könnte in Zukunft zur Erzeugung eines Druckgradienten verwendet werden, indem Teilchen von einem Rezipienten in einen Zweiten beschleunigt werden. Als Voruntersuchung zur Eingnung dieses als Lorentz-Drift-Ventil bezeichneten Konzeptes wurden Messungen durchgeführt, die den Einfluss der Durchbruchspannung auf die Teilchenbeschleunigung mit Hilfe eines piezokeramischen Elementes untersuchen. So wurde der magnetische Druck bzw. die entsprechende Kraft einer Entladungswolke in Abhängigkeit von Durchbruchspannungen bis etwa 9,5 kV untersucht. Es hat sich gezeigt, dass der Einsatz von hohen Spannungen sinnvoll ist, da sich die auf das Piezoelement einwirkende Kraft quadratisch zur Durchbruchspannung verhält. So wurde die maximale Kraft von 0,44N bei einer Zündspannung von 9,52 kV gemessen.
Zudem wurde untersucht, in welchem Druckbereich der Einfluss der Druckwelle zu messen und wie sich die Geschwindigkeit der Ausbreitung der Druckwelle bei verschiedenen Durchbruchspannungen verhält. Bei einer Entfernung von 231mm zwischen Elektrodengeometrie und Piezoelement hat sich gezeigt, dass im Druckbereich unterhalb von etwa 0,2mbar kein wesentlicher Einfluss des Gasdruckes auf die Piezospannung erkennbar ist. Dies lässt sich durch die geringe Teilchenanzahl im Arbeitsgas begründen, sodass Teilchenstöße vernachlässigt werden können. Die maximale gemessene Geschwindigkeit der durch die Entladung verursachten Druckwelle liegt bei 55 km s ± 10%.
Die gemessene Plasmadynamik lässt darauf schließen, dass das Konzept eines gepulsten Lorentz-Drift-Ventils insbesondere mit hohen Durchbruchspannungen realisierbar ist. Zur Erzeugung eines dauerhaften Druckgradienten müsste die Repetitionsrate allerdings ausreichend hoch sein, sodass der rückfließende Gasdurchsatz geringer ist als die durch den LDB erzeugte Drift. Geht man von der Schallgeschwindigkeit als Rückflussgeschwindigkeit der Teilchen aus, so sind mindestens Repetitionszeiten im Bereich einer Millisekunde erforderlich.
Ergänzend zu den durchgeführten Untersuchungen ist es sinnvoll, die bisherigen Messungen durch Einbau eines Triggers zu verifizieren. Ein Trigger erzeugt eine Vorentladung mit deren Hilfe die eigentliche Entladung auch im Bereich unterhalb des Selbstdurchbruchs gezündet werden kann.
Die vorliegende Arbeit hat das Ziel, Plasmen koaxialer Beschleuniger in Hinblick auf die Erzeugung hoher Elektronendichten sowie als intensive UV/VUV-Backlighterquelle zu untersuchen. Hierzu wurde zunächst die Geometrie eines einzelnen Beschleunigers charakterisiert und optimiert, um die bestmöglichen Voraussetzungen für die anschließend durchgeführten Untersuchungen zur Kollision und Kompression der erzeugten Plasmen zu schaffen.
Das Funktionsprinzip des verwendeten Plasmabeschleunigers basiert auf einer Lorentzkraft, die aus dem Stromfluss zwischen zwei koaxial angeordneten Elektroden und dem damit verbundenen Magnetfeld resultiert. Da weder Stromdichte noch Magnetfeld homogen sind, wirkt auch die Lorentzkraft inhomogen auf die Plasmaschicht. Unter Einbeziehung von Simulationen wurde der Abstand zwischen den Elektroden auf 2,5 mm gesetzt, sodass die Ausprägung dieser Inhomogenität möglichst gering gehalten wird. Um ein Pinchen des Plasmas am Ende der Elektroden zu vermeiden haben die Elektroden im Gegensatz zu Plasma Focus Devices die gleiche Länge. Der mit 130 nH niederinduktive elektrische Aufbau ermöglicht die zur Ausbildung einer Plasmaschicht erforderlichen Stromanstiegsraten in der Größenordnung von 10^11 A/s.
Die Messung der Geschwindigkeit der Plasmaschicht erfolgte mit einem Array aus sechs Dioden, die gleichzeitig die Geschwindigkeitsabnahme im Rezipienten dokumentieren. Zusätzlich wurden die Messungen mit Kameraaufnahmen verglichen. Bei einer Elektrodenlänge von 100 mm konnten mit dem verwendeten Heliumgas Schichtgeschwindigkeiten von bis zu (79,49 ± 7,98) km/s erreicht werden. Die Untersuchung von Elektroden mit 200 mm Länge verfolgte das Ziel, durch die größere Beschleunigungszeit höhere Geschwindigkeiten und kinetische Energien der austretenden Plasmaschicht zu erreichen. Es zeigte sich jedoch, dass es hierbei zur Ausbildung einer zweiten Entladung und einer damit verbundenen Abbremsung des Initialplasmas kommt. Die Untersuchungen ergaben, dass die optimale Elektrodenlänge dadurch gegeben ist, dass der Austritt des Plasmas aus dem Beschleuniger zum Zeitpunkt des ersten Stromnulldurchgangs erfolgt. Für die Berechnung der optimalen Elektrodenlänge wurde ein Skalierungsgesetz gefunden, die auf experimentellen Ergebnissen und Simulationen basiert.
Mit spektroskopische Messungen der Stark-Verbreiterung der Hβ-Linie konnte die Elektronendichte des Plasmas zeit- und ortsintegriert bestimmt werden. Die hierbei erzielte Maximaldichte von (6,83 ± 0,83) · 10^15 cm^-3 wurde bei 9 kV und 70 mbar gemessen. Die nach der Boltzmann-Methode zeit- und ortsintegriert bestimmten Elektronentemperaturen bewegt sich bei etwa 1 eV.
Nach ausreichender Charakterisierung des Einzelbeschleunigers wurde das Experiment um einen zweiten, baugleichen Plasmabeschleuniger erweitert, um die planare Kollision zweier Plasmen zu untersuchen. Die maximal gemessene Elektronendichte von n max e = (1,36 ± 0,21) · 10^16 cm^-3 bei 9 kV und 70 mbar stellt im Vergleich zum Einzelplasma eine Steigerung um einen Faktor von 2,48 dar und ist mit einer Temperaturerhöhung einhergehend. Diese Elektronendichteerhöhung lässt sich nicht durch einfaches Durchdringen der Schichten erklären. Vielmehr muss es in der Kollisionszone zu Wechselwirkungsprozesse in Form von Kompression, zur Erzeugung neuer Ladungsträger oder der Kombination aus beidem kommen.
Das Spektrum im UV/VUV-Bereich weist Linien von ab 85 nm auf. Dies stellt eine Verbesserung gegenüber dem Einzelbeschleuniger dar, bei dem die hochenergetischste Spektrallinie erst bei 97 nm gemessen wurde. In der Kollisionskonfiguration mit einem Beschleunigerabstand von 30 mm steigt die integrierte Gesamtintensität des Spektrums bis 300 nm zudem um einen Faktor von etwa 5,2.
Als Alternative zur Plasmakollision wurde die Kompression des Plasmas des Einzelbeschleunigers durch unterschiedliche Trichtergeometrien untersucht. Die untersuchten Trichter der ersten und zweiten Generation unterscheiden sich im Wesentlichen im Durchmesser der kleineren Öffnung. Dieser wurde basierend auf Simulationen von 5 mm auf 0,5 mm reduziert. Die Dichtediagnostik der ersten Trichtergeneration erfolgte hierbei über Hα-Linie, da die Verbreiterung der Hβ-Linie zu stark und daher nicht mehr anwendbar war. Die Auswertung der Halbwertsbreiten der Hα-Linie führt zu Elektronendichten in der Größenordnung von bis zu 1018 cm−3 bei Spannungen von 9 kV. Diese Steigerung um 1,5 bis 2,5 Größenordnungen im Vergleich zum Einzelbeschleuniger ist deutlich höher als das Verhältnis der Flächen des initialen Plasmas bzw. dem Ende des Trichters von etwa acht.
Der Trichter mit verringerter Öffnung wurde bei 5 kV und 5 mbar vermessen, um die mechanische Belastung durch den hohen Druck gering zu halten. Die Bestimmung der Elektronendichte erfolgte durch die Verbreiterung der Kupferlinie bei 479,4 nm nach den quadratischen Stark-Effekt. Trotz der im Vergleich zur ersten Trichtergeneration reduzierten Entladungsenergie und verringertem Druck sind die gemessenen Elektronendichten ebenfalls bei bis zu 10^18 cm^-3.
Durch die Kompression des Plasmas weist das Spektrum im UV/VUV-Bereich bereits Linien ab Wellenlängen etwa 53 nm auf, wobei es unter Berücksichtigung der Transmissionsgrenze von Helium bei 50 nm denkbar ist, dass das Plasma noch niedrigere Wellenlängen emittiert.
Aufgrund der gesammelten Ergebnisse lässt sich festhalten, dass sich die Elektronendichte sowohl durch die Kollision zweier Plasmen als auch durch die Kompression in Trichtergeometrien steigern lässt. Der Verdichtungseffekt der Trichterkompression ist hierbei um ein vielfaches höher, als bei der Plasmakollision. Dies spiegelt sich auch im UV/VUV-Spektrum wider. Beide Versuchsanordnungen eignen sich als Linienstrahler, allerdings weist das Spektrum der Trichterkompression Linien deutlich höherer Anregungszustände auf.