Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Institute
Photosystem (PS) I is a huge membrane protein complex which coordinates around 200 co-factors. Upon light excitation a charge separation at the PS I reaction centre is induced which leads to an electron transport across the thylakoid membrane and the generation of redox equivalents needed for several biochemical reactions, e.g. the synthesis of sugars. For higher plants and cyanobacteria the crystal structure of PS I complexes were resolved to resolutions of 4.4 Å and 2.5 Å. Furthermore, supramolecular structures of PS I of eukaryotic algae, mainly of the green line, were obtained recently. However, up to now, no structure of diatoms is available yet. Diatoms are key players in global primary production and derived from a secondary endosymbiosis event. Their chloroplasts are surrounded by four envelope membranes and their thylakoids are evenly arranged in bands of three, i.e. no separation in grana and stroma regions is apparent. In this thesis a protocol was developed to isolate a functional PS I complex of diatoms which can be used for structural analysis by transmissional electron microscopy (TEM). A photosystem I-fucoxanthin chlorophyll protein (PS I-FCP) complex was isolated from the pennate diatom Phaeodactylum tricornutum by ion exchange chromatography. Spectroscopic analysis proved that bound Fcp polypeptides function as a light-harvesting complex. An active light energy transfer from Fcp associated pigments, Chl c and fucoxanthin, towards the PS I core was proven by fluorescence spectroscopy. Oxidised minus reduced difference spectroscopy evidenced the activity of the PS I reaction centre P700 and yielded a chlorophyll a/P700 ratio of approximately 200:1. These data indicate that the isolated PS I-FCP complex exceeds the PS I cores from cyanobacteria and higher plants in the numbers of chlorophyll a molecules. Because of the strict conservation of PS I cores among organisms the additional 100 chlorophyll a molecules must either be coordinated by Fcps or function as linker molecules between the Fcp antenna and the PS I core as shown for the PS I-LHC I complex of higher plants. To tell something about the structural organisation, the PS I-FCP complex was compared with its cyanobacterial and higher plant counterparts. Whereas cyanobacterial PS I cores aggregate to trimers, usually without associated antennae, higher plant PS I is a monomer and binds additionally two LHC I heterodimers. BN-PAGE and gel filtration experiments showed that also diatoms contain PS I monomers associated with Fcps as light-harvesting antenna. First TEM studies evidenced these observations. Negatively stained PS I-FCP particles had an increased size compared to PS I cores of other organisms. No PS I trimers or higher oligomers have been found. The calculated diameter and shape of the particles correspond to PS I-LHC I particles obtained from green algae, which also comprise of a higher number of LHC I polypeptides compared to the higher plant x-ray structure. Additionally, the analysis of polypeptides indicates that the PS I associated Fcps differ from the free Fcp pool and also from Fcps of a PS II enriched fraction. The assumption that diatoms harbour just one Fcp antenna that serve both Photosystems equally seems to be wrong. To further study the association of Fcps with the two Photosystems, both complexes plus the free FCP complexes were isolated from the centric diatom Cyclotella meneghiniana. Because of the availability of antibodies directed against specific Fcp polypeptides of Cyclotella the PS I-FCP complex of Phaeodactylum could not be used. A trimeric FCP complex, FCPa, and a higher FCP oligomer, FCPb, have already been described for C. meneghiniana. The latter is assumed to be composed of only Fcp5, whereas the FCPa contains Fcp2 and Fcp6. Biochemical and spectroscopical evidences revealed a different subset of associated Fcp polypeptides within the isolated photosystem complexes. Whereas the PS II associated Fcp antenna resembles FCPa, at least three different Fcp polypeptides are associated with PS I. By re-solubilisation of the PS I complex and a further purification step Fcp polypeptides were partially removed from PS I and both fractions were analysed again by biochemical and spectroscopical means, as well as by HPLC. Thereby Fcp4 and a so far undescribed 17 kDa Fcp were found to be strongly coupled to PS I, whereas another Fcp, presumably Fcp5, is only loosely bound to the PS I core. Thus an association of FCPb and PS I is assumed.
Eukaryotic ribosome biogenesis requires the concerted action of numerous ribosome assembly factors, for most of which structural and functional information is currently lacking. Nob1, which can be identified in eukaryotes and archaea, is required for the final maturation of the small subunit ribosomal RNA in yeast by catalyzing cleavage at site D after export of the preribosomal subunit into the cytoplasm. Here, we show that this also holds true for Nob1 from the archaeon Pyrococcus horikoshii, which efficiently cleaves RNA-substrates containing the D-site of the preribosomal RNA in a manganese-dependent manner. The structure of PhNob1 solved by nuclear magnetic resonance spectroscopy revealed a PIN domain common with many nucleases and a zinc ribbon domain, which are structurally connected by a flexible linker. We show that amino acid residues required for substrate binding reside in the PIN domain whereas the zinc ribbon domain alone is sufficient to bind helix 40 of the small subunit rRNA. This suggests that the zinc ribbon domain acts as an anchor point for the protein on the nascent subunit positioning it in the proximity of the cleavage site.