Refine
Document Type
- Article (4)
- Diploma Thesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature – equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies.
During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature – equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies.
On the observation of mesospheric air inside the arctic stratospheric polar vortex in early 2003
(2005)
During several balloon flights inside the Arctic polar vortex in early 2003, unusual trace gas distributions were observed, which indicate a strong influence of mesospheric air in the stratosphere. The tuneable diode laser (TDL) instrument SPIRALE (Spectroscopie InFrarouge par Absorption de Lasers Embarqués) measured unusually high CO values (up to 600 ppb) on 27 January at about 30 km altitude. The cryosampler BONBON sampled air masses with very high molecular Hydrogen, extremely low SF6 and enhanced CO values on 6 March at about 25 km altitude. Finally, the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) Fourier Transform Infra-Red (FTIR) spectrometer showed NOy values which are significantly higher than NOy* (the NOy derived from a correlation between N2O and NOy under undisturbed conditions), on 21 and 22 March in a layer centred at 22 km altitude. Thus, the mesospheric air seems to have been present in a layer descending from about 30 km in late January to 25 km altitude in early March and about 22 km altitude on 20 March. We present corroborating evidence from a model study using the KASIMA (KArlsruhe Simulation model of the Middle Atmosphere) model that also shows a layer of mesospheric air, which descended into the stratosphere in November and early December 2002, before the minor warming which occurred in late December 2002 lead to a descent of upper stratospheric air, cutting of a layer in which mesospheric air is present. This layer then descended inside the vortex over the course of the winter. The same feature is found in trajectory calculations, based on a large number of trajectories started in the vicinity of the observations on 6 March. Based on the difference between the mean age derived from SF6 (which has an irreversible mesospheric loss) and from CO2 (whose mesospheric loss is much smaller and reversible) we estimate that the fraction of mesospheric air in the layer observed on 6 March, must have been somewhere between 35% and 100%.
During several balloon flights inside the Arctic polar vortex in early 2003, unusual trace gas distributions were observed, which indicate a strong influence of mesospheric air in the stratosphere. The tuneable diode laser (TDL) instrument SPIRALE (Spectroscopie InFrarouge par Absorption de Lasers Embarqués) measured unusually high CO values (up to 600 ppb) on 27 January at about 30 km altitude. The cryosampler BONBON sampled air masses with very high molecular Hydrogen, extremely low SF6 and enhanced CO values on 6 March at about 25 km altitude. Finally, the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) Fourier Transform Infra-Red (FTIR) spectrometer showed NOy values which are significantly higher than NOy* (the NOy derived from a correlation between N2O and NOy under undisturbed conditions), on 21 and 22 March in a layer centred at 22 km altitude. Thus, the mesospheric air seems to have been present in a layer descending from about 30 km in late January to 25 km altitude in early March and about 22 km altitude on 20 March. We present corroborating evidence from a model study using the KASIMA (KArlsruhe Simulation model of the Middle Atmosphere) model that also shows a layer of mesospheric air, which descended into the stratosphere in November and early December 2002, before the minor warming which occurred in late December 2002 lead to a descent of upper stratospheric air, cutting of a layer in which mesospheric air is present. This layer then descended inside the vortex over the course of the winter. The same feature is found in trajectory calculations, based on a large number of trajectories started in the vicinity of the observations on 6 March. Based on the difference between the mean age derived from SF6 (which has an irreversible mesospheric loss) and from CO2 (whose mesospheric loss is much smaller and reversible) we estimate that the fraction of mesospheric air in the layer observed on 6 March, must have been somewhere between 35% and 100%.
Die Chemie und der Strahlungshaushalt der Erdatmosphäre werden durch die nur in relativ geringen Konzentrationen vorhandenen Spurengase und Aerosolpartikel beherrscht. Mit den zunehmenden anthropogenen Emissionen von atmosphärischen Spurengasen, verursacht durch die wachsende Weltbevölkerung und die zunehmende Industrialisierung, wurde in den letzten Dekaden ein globaler Wandel bei der Zusammensetzung der Erdatmosphäre festgestellt: Konzentrationen von atmosphärischen Spurenstoffen verändern sich nicht mehr auf vergleichsweise langsamen geologischen Zeitskalen, sondern mit viel höheren Geschwindigkeiten, in einzelnen Fällen von bis zu einem Prozent pro Jahr. Die wohl bekanntesten Folgen dieser Veränderungen sind die globale Erwärmung durch die ansteigenden Emissionen von Treibhausgasen und der mit dem antarktischen 'Ozonloch" entdeckte drastische Ozonverlust in der Stratosphäre durch anthropogene Fluor-Chlor-Kohlenwasserstoffe (FCKW). Die Verteilung der für Ozonchemie und Klima relevanten Spurengase in der Atmosphäre hängt dabei nicht nur von der Verteilung ihrer Quellen und Senken ab, sondern wird maßgeblich durch verschiedene Transportprozesse beeinflußt. Der Austausch zwischen der mit anthropogenen Emissionen belasteten Troposphäre und den höheren Atmosphärenschichten Stratosphäre und Mesosphäre spielt dabei eine zentrale Rolle. Im Rahmen der Dissertation wurde zum besseren Verständnis von Stratosphären-Troposphären-Austauschprozessen die Verteilung von langlebigen Spurengasen in den beiden atmosphärischen Kompartimenten Troposphäre und Stratosphäre untersucht. Dazu wurde bei einer Meßkampagne im Sommer 1998 im Rahmen des von der Europäischen Union geförderten Forschungsprojektes STREAM 98 der flugzeuggetragene Gaschromatograph GhOST (Gas chromatograph for the Observation of Stratospheric Tracers) an Bord einer Cessna Citation II der TU Delft in Höhen bis 13 km eingesetzt. Dabei konnten bei zwanzig Meß- und Transferflügen über Kanada, dem Atlantik und Westeuropa umfangreiche Messungen der langlebigen Spurengase N20, F11 und F12 in der oberen Troposphäre und der Untersten Stratosphäre durchgeführt werden. Unter Flugbedingungen wurde mit GhOST während der Kampagne eine Reproduzierbarkeit (1 o) von besser als 0,6 % und eine absolute Genauigkeit von besser als 2 % für alle nachgewiesenen Spurengase erreicht. Diese hohe Meßpräzision konnte durch zahlreiche Vergleichsmessungen mit anderen Meßgeräten und Meßverfahren - im Flugbetrieb und im Labor sichergestellt werden; die Linearität des Geräts wurde zudem mit Hilfe einer barometrisch hergestellten Verdünnungsreihe untersucht. Die mit GhOST bei STREAM 98 gewonnenen Meßwerte wurden zusammen mit Messungen und Modelldaten der am Projekt beteiligten Arbeitsgruppen zur Untersuchung von Spurengasverteilungen und Stratosphären-Troposphären-Austauschprozessen herangezogen. Untersucht wurden dabei unter anderem die Verteilung und Variabilität von N20, F11 und F12 in der Troposphäre und in der Untersten Stratosphäre der mittleren Breiten, Austausch- und Mischungsprozesse in der Tropopausenregion und die Variabilität von Tracer/Tracer-Korrelationen in der Untersten Stratosphäre. Aufbauend auf den Erfahrungen bei STREAM 98 wurde für das vom BMBF geförderte Projekt SPURT im Rahmen dieser Doktorarbeit der in-situ-Gaschromatograph GhOST II entwickelt. Unter Beibehaltung der gaschromatographischen Komponenten von GhOST wurden zur Messung der Spurengase SF6 und CO zwei zusätzliche Detektoren integriert und zahlreiche technische Verbesserungen durchgeführt. Für die vollautomatische rechnergestützte Elektronik zur Steuerung des neuen Gerätes wurden zusammen mit der institutseigenen Elektronikwerkstatt verschiedene Baugruppen zur Signalführung und -verarbeitung, zur Temperaturmessung und zur Ansteuerung von Leistungskomponenten entwickelt. Während einer Testkampagne im April 2001 wurde GhOST II erfolgreich mechanisch und elektrisch auf einem Learjet 35A integriert und kam bei zwei Meßflügen der Meßkampagne SPURT 1 im November 2001 zum Einsatz.
Das 1913 auf dem Gipfel des Kleinen Feldbergs gegründete Taunus-Observatorium (T.O.) ist eine Einrichtung der Johann Wolfgang Goethe-Universität Frankfurt am Main. Es dient dem Institut für Meteorologie und Geophysik als Forschungsstätte für kontinuierliche Messungen und als Standort für Meßkampagnen in Zusammenarbeit mit anderen Instituten, wie z. B. beim The Kleiner Feldberg Cloud Experiment 1990 [Fuzzi, 1995]. Darüber hinaus wird das Observatorium mit seinen Einrichtungen immer wieder für Messungen im Rahmen von Diplom- und Doktorarbeiten genutzt. Primäres Ziel dieser Diplomarbeit war eine Charakterisierung der zeitlichen Variabilität der luftchemischen Bedingungen am Taunus-Observatorium in Abhängigkeit von Wetter und Witterung. In der Zeit vom 13. Dezember 1996 bis zum 26. März 1997 wurden am Taunus- Observatorium auf dem Kleinen Feldberg mit Hilfe eines gaschromatographischen Analyseverfahrens die Spurengase Kohlenmonoxid und molekularer Wasserstoff gemessen, um die zeitliche Variabilität der luftchemischen Bedingungen am Taunus-Observatorium in Abhängigkeit von Wetter und Witterung zu untersuchen. Bei der Meßreihe am Taunus-Observatorium zeigte sich, daß die zeitlichen Variationen der langlebigen Spurengase CO und H2 über Tage und Wochen maßgeblich durch den Ferntransport von Luftmassen und die jeweilige Großwetterlage bestimmt werden. Mit Hilfe von Trajektorienanalysen konnte gezeigt werden, daß die Messungen stark von Herkunft und Zugweg der jeweiligen Luftmassen abhängen. Deutliche Änderungen der mittleren CO- und H2-Mischungsverhältnisse wurden bei Luftmassenänderungen beobachtet, wie z. B. eine markante Abnahme von Kohlenmonoxid und molekularem Wasserstoff nach dem Durchgang von Kalt- oder Warmfronten. Extreme Unterschiede der gemessenen Spurengaskonzentrationen konnten auch bei verschiedenen winterlichen Inversionswetterlagen registriert werden. Befand sich das Taunus-Observatorium unterhalb einer Temperaturinversion in der bodennahen Grenzschicht, wurden ungewöhnlich hohe CO- und H2-Mischungsverhältnisse gemessen; war der Kleine Feldberg dagegen über der Inversion innerhalb der freien Atmosphäre, wurden wiederholtdie atmosphärischen Hintergrundkonzentrationen von Kohlenmonoxid und molekularem Wasserstoff beobachtet. Auch durch lokale und regionale Effekte konnten in Abhängigkeit von der lokalen Windrichtung starke zeitliche Variationen der luftchemischen Bedingungen beobachtet werden. Durch die Orographie bedingt Verursachen kleine Änderungen der lokalen Windrichtung drastische Veränderungen in den gemessenen Spurengaskonzentrationen. So trennt z. B. der Taunuskamm die durch regionale Quellen im Großraum Frankfurt belastete Luft im Vordertaunus von der weniger verschmutzter Luft im ländlichen Hintertaunus. Darüber hinaus kann durch die Kanalisierung des Windes in verschiedenen Tälern oder an den Flanken des Taunuskammskontaminierte Luft aus den Niederungen herangeführt werden. Die hohe Variabilität der gemessenen Mischungsverhältnisse in Abhängigkeit von Meteorologie und Orographie dominiert den Tagesverlauf der CO- und H2-Messungen. Daher war eine Untersuchung von anthropogenen Tages- und Wochengängen oder sogar jahreszeitlicher Variationen der langlebigen Spurengase CO und H2 am Taunus-Observatorium nicht möglich. Zusätzlich zu den Messungen am Taunus-Observatorium wurde mit der in dieser Arbeit vorbereiteten Analytik das Mischungsverhältnis von molekularem Wasserstoff in stratosphärischen Luftproben von drei verschiedenen Ballonflügen gemessen, entsprechende H2-Vertikalprofile erstellt und die Ergebnisse der Messungen mit Modellrechnungen verglichen.