Refine
Year of publication
- 2011 (2)
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Institute
Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1
(2011)
The respiratory chain in the inner mitochondrial membrane contains three large multi-enzyme complexes that together establish the proton gradient for ATP synthesis, and assemble into a supercomplex. A 19-Å 3D map of the 1.7-MDa amphipol-solubilized supercomplex I1III2IV1 from bovine heart obtained by single-particle electron cryo-microscopy reveals an amphipol belt replacing the membrane lipid bilayer. A precise fit of the X-ray structures of complex I, the complex III dimer, and monomeric complex IV indicates distances of 13 nm between the ubiquinol-binding sites of complexes I and III, and of 10–11 nm between the cytochrome c binding sites of complexes III and IV. The arrangement of respiratory chain complexes suggests two possible pathways for efficient electron transfer through the supercomplex, of which the shorter branch through the complex III monomer proximal to complex I may be preferred.
Die Atmungskette in der inneren Membran der Mitochondrien besteht aus fünf großen Enzymkomplexen. Die NADH-Dehydrogenase (I), Succinat-Dehydrogenase (II, indirekt), Cytochrom c-Reduktase (III) und Cytochrom c-Oxidase (IV) nutzen die Energie aus Elektronentransfers zum Aufbau eines Protonengradienten über die innere Mitochondrienmembran. Dieser wird anschließend von der FOF1-ATP-Synthase (V) als Energiequelle zur Phospho-rylierung von ADP verwendet. Für lange Zeit bestand eine Kontroverse, wie diese Proteine in der Membran organisiert sind. Nach dem „random collision“-Modell diffundieren sie frei als Einzelmoleküle und treffen sich nur zufällig, während sie nach dem „solid state“-Modell größere funktionelle Einheiten bilden. In den letzten Jahren gab es vermehrt Hinweise darauf, dass das letztere Modell das zutreffendere ist, da tatsächlich sogenannte Superkomplexe der Atmungskette in aktiver Form isoliert werden konnten. Schließlich konnte 2007 die erste drei-dimensionale Rekonstruktion eines Superkomplexes, bestehend aus Komplex I, dimerem Komplex III und Komplex IV publiziert werden. Aufgrund der Einschränkungen der verwendeten Negativkontrasttechnik hatte dieses Modell allerdings nur eine niedrige Auflösung und repräsentierte durch die Dehydrierung keinen nativen Zustand. Dadurch ließen sich die Strukturen der einzelnen Komplexe nur ungenau einpassen. Um diese Probleme zu umgehen, sollte eine Struktur unter Kryo-Bedingungen rekonstruiert werden. Um die für Kryo-EM benötigte größere Ausbeute und höhere Konzentration zu erzielen, wurde ein neues Reinigungsprotokoll für die Superkomplexe etabliert. Die wesentlichen Punkte darin sind der Austausch des für die Solubilisierung verwendeten Digitonins durch Amphipol A8-35 mittels ?-Cyclodextrin und eine anschließende Dichtegradienten-Ultrazentrifugation. Im BN-PAGE zeigten die auf diese Art gereinigten Superkomplexe das gleiche Banden- und Aktivitätsmuster wie Proben in Digitonin. Auch bei einer Einzelpartikelanalyse nach Negativ-kontrastfärbung konnten keine Unterschiede festgestellt werden und die Partikel zeigten ähnliche Orientierungen wie in der vorherigen Studie. Einige neue Ansichten ließen sich jedoch nicht zuordnen und stellten eventuell eine Verunreinigung mit größeren Superkomplexen dar. Da auch bei der Reinigung mit Amphipol die Proteinkonzentration letztlich nicht wesentlich erhöht werden konnte und sich die Superkomplexe nicht wie für Kryo-EM erforderlich in einen löchrigen Kohlefilm einlagerten, wurden die Proteine auf einem durchgehenden Kohlefilm in einer dünnen Pufferschicht vitrifiziert. Die dabei zu beobachtenden bevorzugten Orientierungen, sollten auch die Unterscheidung von verschiedenen Populationen von Superkomplexen erleichtern. Eine erste 3D-Rekonstruktion wurde mit Hilfe der „random conical tilt“-Methode errechnet. Dieses Modell wurde durch „projection matching“ bis zu einer Auflösung von 19 Å verfeinert, womit die Auflösung fast doppelt so hoch ist, wie bei der Rekonstruktion aus Negativ-kontrastfärbung (36 Å). Die Struktur repräsentiert einen natürlichen Zustand des Proteins und zeigt Details wie einzelne Domänen, Spalten zwischen Domänen und eine starke Krümmung des Membranarms von Komplex I, die zuvor nicht erkenn-bar waren. Die Amphipole bilden einen Gürtel um den Transmembranbereich. Die Röntgenstrukturen von Komplex I, III2 und IV konnten mit großer Präzision in die Dichtekarte eingepasst werden. Die wenigen kleinen Unterschiede zwischen Röntgenstrukturen und EM-Dichtekarte sind auf leichte Konformations-änderungen zurückzuführen. Die Kryo-EM-Rekonstruktion ist erheblich größer als die Rekonstruktion aus Negativfärbung, wodurch die enthaltenen Komplexe nur noch wenige punktuelle Kontakte haben. In den Zwischenräumen könnte eine spezielle Lipidumgebung die kleinen Elektronenüberträger Ubichinon und Cytochrom c in den Superkomplex integrieren. Ihre Bindestellen sind jeweils zueinander orientiert und die geringen Abstände, die zum ersten Mal bestimmt werden konnten, stützen die Hypothese eines gerichteten Substrattransfers über kurze Entfernungen. Von den möglichen Übertragungswegen scheint der kürzere mit weniger Transferreaktionen bevorzugt zu werden. Während der Entwicklung des neuen Reinigungsprotokolls für die Superkomplexe konnte zusätzlich eine neue Methode zur Rekonstitution von Membranproteinen entwickelt werden. Die solubilisierten Proteine werden dabei in Dichtegradienten mit steigenden Konzentrationen von ansolubilisierten Liposomen und Cyclodextrin zentrifugiert, wodurch ihnen langsam das Detergens entzogen und durch Lipid ersetzt wird. Proteoliposomen werden gleichzeitig von überschüssigem Lipid und Cyclodextrin-Detergens-Komplexen getrennt.