Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
- Report (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- mitochondria (2)
- subtomogram averaging (2)
- ATP synthase (1)
- Digital Humanities (1)
- Kunstgeschichte (1)
- Online-Edition (1)
- Primärquelle (1)
- TEI (1)
- cryo-electron tomography (1)
- electron cryotomography (1)
Institute
Der folgende Text stellt ein Online-Projekt vor, das seit April 2007 mit einer Laufzeit von fünf Jahren auf Initiative des Kunstgeschichtlichen Instituts in Frankfurt und des Kunsthistorischen Instituts in Florenz entwickelt, zusammen mit den Partnerinstitutionen Städel Museum und Historisches Museum in Frankfurt durchgeführt und gemeinsam von der Deutschen Forschungsgemeinschaft und der Max-Planck-Gesellschaft finanziert wird.
We used electron cryo-tomography and subtomogram averaging to investigate the structure of complex I and its supramolecular assemblies in the inner mitochondrial membrane of mammals, fungi, and plants. Tomographic volumes containing complex I were averaged at ∼4 nm resolution. Principal component analysis indicated that ∼60% of complex I formed a supercomplex with dimeric complex III, while ∼40% were not associated with other respiratory chain complexes. The mutual arrangement of complex I and III2 was essentially conserved in all supercomplexes investigated. In addition, up to two copies of monomeric complex IV were associated with the complex I1III2 assembly in bovine heart and the yeast Yarrowia lipolytica, but their positions varied. No complex IV was detected in the respiratory supercomplex of the plant Asparagus officinalis. Instead, an ∼4.5-nm globular protein density was observed on the matrix side of the complex I membrane arm, which we assign to γ-carbonic anhydrase. Our results demonstrate that respiratory chain supercomplexes in situ have a conserved core of complex I and III2, but otherwise their stoichiometry and structure varies. The conserved features of supercomplex assemblies indicate an important role in respiratory electron transfer.
Im Rahmen dieser Arbeit wurden zum Vergleich die Strukturen der ATP-Synthasen von Arabidopsis thaliana, Asparagus officinalis, Allium cepa, Helianthus annus, Solanum tuberosum, Bos taurus und Saccharomyces cerevisiae gelöst. Die ATP-Synthase von S. cerevisiae konnte mit einer Auflösung von 19 Å gelöst werden. Der Winkel zwischen den zwei ATP-Synthase-Monomeren in dem ATP-Synthase-Dimer hatte für jede Spezies einen bestimmten Wert. Dieser Winkel änderte sich innerhalb einer Spezies nur wenig im Gegensatz zu Untersuchungen mit Einzelpartikelanalyse.
Die ATP-Synthase-Dimere aus den untersuchten Spezies besitzen unterschiedliche Winkel zwischen 78˚ und 122˚. Der Winkel des ATP-Synthase-Dimers aus S. tuberosum (122˚) viel größer als der in anderen Pflanzen (~98˚), B. taurus (105˚) und S. cerevisiae (78˚). Die Proben von S. tuberosum und B. taurus waren jedoch dünner, was den Winkel eventuell beeinflussen könnte. Um dies auszuschließen müssen in Zukunft weitere Untersuchungen durchgeführt werden.
Des Weiteren wurde im peripheren Stiel der ATP-Synthasen von allen Pflanzenspezies eine Dichte entdeckt, die in B. taurus und S. cerevisiae nicht vorhanden ist. Die Dichte könnte durch eine zusätzliche Untereinheit oder veränderte Untereinheit im Vergleich zu B. taurus und S. cerevisiae kommen.
Weiterhin wurde die Bildung von Reihen aus ATP-Synthase-Dimeren untersucht. Es wurden ATP-Synthase-Dimere von Polytomella sp. gereinigt und in Lipid rekonstituiert. Es wurde das ATP-Synthase-Dimer von Polytomella sp. verwendet, da dieses besonders stabil ist und während der Reinigung nicht zum ATP-Synthase-Monomer zerfällt. Zur Rekonstitution wurde die milde GRecon-Methode verwendet. Hierbei werden Membranproteine in einem Zuckergradienten gleichzeitig in Lipid rekonstituiert und nach ihrer Dichte getrennt. Abhängig von der Dichte der Proteoliposomen ist die Konzentration an Membranproteinen unterschiedlich. In Proteoliposomen mit einer hohen Konzentration bilden sich dünne Schichten in denen die ATP-Synthase-Dimeren Zickzack-Muster formen. Dies deutet darauf hin, dass das ATP-Synthase-Dimer die Membran verformt. In Proteoliposomen mit einer niedrigeren Konzentration an ATP-Synthase-Dimeren wurden runde Vesikel detektiert, in denen die ATP-Synthase-Dimere lange Reihen bilden und die Membran innerhalb jedes ATP-Synthase-Dimer ebenfalls verformt ist. Molekulare Simulationen bestätigen dieses Ergebnis.
Zudem wurde das ATP-Synthase-Dimer in zwei verschiedene Lipide ohne Cardiolipin rekonstituiert, da Cardiolipin ein Lipid ist welches in der bakteriellen und mitochondrialen Membran gefunden wurde und in hohen Konzentrationen in Membrankrümmungen lokalisiert ist (Huang et al., 2006), wie auch die ATP-Synthase-Dimere. Ohne Cardiolipin ist die Rekonstitution nicht geglückt beziehungsweise sind die ATP-Synthase-Dimere weniger gut zueinander angeordnet. Das deutet auf die Wichtigkeit von Cardiolipin in der Stabilisierung der Reihen von ATP-Synthase-Dimeren hin. Weitere Experimente mit verschiedenen ATP-Synthase-Dimeren in verschiedenen Lipiden sind nötig um dies zu untermauern.
Ein weiteres Ziel dieser Arbeit war es ein klonierbares Label zu etablieren, um ein bestimmtes Protein in Kryo-Elektronentomogramme zu identifizieren. Das Label sollte klein sein, um das zu identifizierbare Protein nicht zu beeinflussen und groß genug um in Kryo-Elektronentomogramme identifizierbar zu sein. In Einzelbildern wurde das 6 kDa große Metallothionein gebunden mit Gold identifiziert, wenn zwei Metallothioneine an dem gewünschten Protein kloniert wurden. Metallothionein besteht zu 33 % aus Cysteinen, welche Schwermetalle binden.
In meinen Studien habe ich bewiesen, dass drei Metallothioneine, gebunden mit Gold, in Kryo-Elektronentomogramme detektiert werden können. Jedoch tritt bei der Verwendung von Metallothionein durch die hohe Anzahl an Cysteinen vermehrt Aggregation auf. Bei meinen Untersuchungen fand ich heraus, dass auch das Maltose-Binde-Protein (MBP) ein Signal gleicher Intensität erzeugt. Durch Verwendung von MBP tritt aber keine Aggregation auf und man kann MBP auch zum Reinigen des Proteins verwenden.
Mitochondrial ATP synthases form dimers, which assemble into long ribbons at the rims of the inner membrane cristae. We reconstituted detergent-purified mitochondrial ATP synthase dimers from the green algae Polytomella sp. and the yeast Yarrowia lipolytica into liposomes and examined them by electron cryotomography. Tomographic volumes revealed that ATP synthase dimers from both species self-assemble into rows and bend the lipid bilayer locally. The dimer rows and the induced degree of membrane curvature closely resemble those in the inner membrane cristae. Monomers of mitochondrial ATP synthase reconstituted into liposomes do not bend membrane visibly and do not form rows. No specific lipids or proteins other than ATP synthase dimers are required for row formation and membrane remodelling. Long rows of ATP synthase dimers are a conserved feature of mitochondrial inner membranes. They are required for cristae formation and a main factor in mitochondrial morphogenesis.