• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Havermeier, Tilo (2)

Year of publication

  • 2006 (1)
  • 2010 (1)

Document Type

  • diplomthesis (1)
  • Doctoral Thesis (1)

Language

  • German (2)

Has Fulltext

  • yes (2)

Is part of the Bibliography

  • no (2)

Keywords

  • Dimere (1)
  • Helium (1)
  • Heliumdimere (1)
  • ICD (1)
  • Photoionisation (1)
  • helium dimers (1)

Institute

  • Physik (2)

2 search hits

  • 1 to 2
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Photoionisation von Heliumdimeren (2010)
Havermeier, Tilo
Die vorliegende Arbeit bietet zunächst einen weiteren Beweis für die Existenz des neutralen Heliumdimers. Darüber hinaus konnten zwei verschiedene Prozesse identifiziert werden, über die die Absorbtion eines Photons zur Ionisation beider Atome des Dimers über sehr große Abstände führen kann. Oberhalb einer Photonenenergie von 65,4 eV konnte ein ICD Prozess beobachtet werden, der über Photoionisation mit gleichzeitiger Anregung von einem der beiden Atome realisiert wird. Bei 77,86 eV konnte ICD über elektronisch angeregte Zustände bis n=6 nachgewiesen werden. In der KER-Verteilung konnten zudem Strukturen gefunden werden, die auf Vibrationsanregungen im Zwischenzustand des Dimer-Ions schließen lassen. Eine vollständig quantenmechanische Rechnung von Sisourat et al. konnte dies schließlich hervorragend bestätigen. Es konnte also ein direkter Blick auf die Vibrationswellenfunktionen des Systems erlangt werden. In anderen Systemen ist dies in der Regel nicht möglich, da sich alle Zustände üblicherweise zu einer strukturlosen Verteilung überlagern. Weiterhin konnte gezeigt werden, dass sich die Winkelverteilungen von ICD- und Photoelektronen in verschiedenen Bereichen des KER mitunter stark voneinander unterscheiden. Dies konnte auf die unterschiedliche Besetzung von verschiedenen Potentialkurven zurückgeführt werden. Unterhalb der Photonenenergieschwelle zur Anregung und Ionisation eines Heliumatoms konnte ein weiterer, zweistufiger Ionisationsmechanismus gefunden werden. Hier wird zunächst durch Photoionisation ein Elektron aus einem der beiden Atome im Dimer freigesetzt. Dieses Photoelektron kann nun am neutralen Atom gestreut werden und dabei ausreichend viel Energie übertragen, um dieses ebenfalls zu ionisieren. Es konnte gezeigt werden, dass der Prozess einer Abhängigkeit von der Polarisation der Synchrotronstrahlung unterliegt, die man für Photoionisation erwarten würde. Die Energie- und Winkelverteilungen der Elektronen konnten daher mit vorangegangenen Elektronenstoß-Experimenten verglichen werden. Die gute Übereinstimmung mit diesen Daten rechtfertigt eine anschauliche Sichtweise des Prozesses als Analogon zum klassischen Billiard-Stoß. Der Two-Step-Prozess wurde bisher zwar schon in vielen Systemen als theoretisches Modell zur Doppelionisation beschrieben, allerdings konnten die einzelnen Unterprozesse bisher nicht gesondert gemessen werden. Die großen Abstände im Heliumdimer ermöglichen erstmals eine deutliche Trennung in Photoionisation an einem Atom und Elektronenstoß (e,2e) am Nachbaratom. Der Two-Step-Prozess konnte außerdem dazu verwendet werden, die ungewöhnliche Grundzustandswellenfunktion des Heliumdimers zu experimentell zu bestätigen. Eine Analyse des gemessenen KER konnte dabei deutliche Abweichungen zu einer klassischen Theorie aufzeigen. Erst eine vollständig quantenmechanische Rechnung des Übergangs von Sisourat et al. konnte die Messdaten beschreiben.
Photoionisation und doppelt angeregte Zustände in Wasserstoff- und Deuterium-Molekülen (2006)
Havermeier, Tilo
In dieser Arbeit wurden ionisierende Prozesse inWasserstoff- und Deuterium-Molekülen untersucht. Das Ziel war es dabei insbesondere, doppelt angeregte Zustände näher zu betrachten, d.h. Prozesse, bei denen mit einem UV-Photon beide Elektronen des H2 angeregt werden. Das Molekül zerfällt dann schließlich in ein angeregtes Atom sowie ein Proton und ein Elektron. Diese Doppelanregung konnte in den Messdaten identifiziert werden. Durch die Art der Messung war es möglich, einen umfassenden Überblick über den Photonenenergiebereich von 29 bis 60 eV zu erhalten (siehe Abb. 4.4). Somit konnte die Dynamik verschiedener Prozesse mit sich ändernder Photonenenergie analysiert werden. Es konnte die Einfach-Ionisation vom Einsetzen bis hin zur Doppel-Ionisation beobachtet werden. Zwischen 29 und 38 eV traten dabei Anregungen auf das Q1- und Q2-Band auf. Insbesondere für einen KER<2 eV konnten interessante Strukturen aufgelöst werden, die bei bisherigen Experimenten nur eindimensional, d.h. ohne die Varianz der Photonenenergie, betrachtet werden konnten. Eine Gegenüberstellung der beiden Isotope H2 und D2 zeigte zahlreiche Unterschiede bei der Autoionisation auf. Für den Bereich des KER, der einer Anregung auf das Q2-Band entspricht, konnten außerdem Winkelverteilungen erstellt werden und mit Verteilungen verglichen werden, die aus der direkten Besetzung des (2p sigma u) Zustands resultieren. Dabei wurde für beide Isotope eine Asymmetrie beobachtet. Für höhere Photonenenergien lagen schließlich die Endzustände zu dicht beieinander, um aufgelöst zu werden. Doppelanregungen auf das Q3- und Q4-Band konnten daher hier nicht explizit beobachtet werden. Für künftige Messungen wäre es sicher interessant, das Q1-Band mit einem speziell darauf abgestimmten Spektrometer im entsprechenden Energiebereich genauer zu studieren. So könnten die energetischen Strukturen dieser niederenergetischen Protonen besser aufgelöst und somit der Kontrast zur Besetzung des 1s sigma g Zustands erhöht werden. Außerdem wäre es von Interesse auch Photonenenergien unterhalb von 29 eV zu betrachten, was jedoch an Beamline 9.3.2 der ALS nicht möglich war. Ebenso wäre natürlich der höhere Photonenfluss einer Undulator-Beamline wünschenswert, um eine bessere Statistik zu erhalten. Hier konnte gezeigt werden, dass im Energiebereich, in welchem Anregungen auf das Q3- und Q4-Band möglich sind, nur Intensitäten in höheren Endzuständen (n >=2) auftreten. Um eventuelle Strukturen in diesem Bereich zu studieren ist ein jedoch ein höher auflösendes Spektrometer notwendig. Dies könnte z.B. durch größere MCP realisiert werden.
  • 1 to 2

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks