Refine
Year of publication
Document Type
- Article (33)
- Conference Proceeding (1)
Has Fulltext
- yes (34)
Is part of the Bibliography
- no (34)
Keywords
- Cochlear implant (5)
- COVID-19 (4)
- Cochlear implantation (4)
- cochlear implant (3)
- speech perception (3)
- Anschlussheilbehandlung (2)
- Auditory rehabilitation (2)
- Cochleaimplantation (2)
- Follow-up treatment (2)
- Hörrehabilitation (2)
Institute
- Medizin (34)
Background: Due to the coronavirus disease 2019 (COVID-19) pandemic, interventions in the upper airways are considered high-risk procedures for otolaryngologists and their colleagues. The purpose of this study was to evaluate limitations in hearing and communication when using a powered air-purifying respirator (PAPR) system to protect against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) transmission and to assess the benefit of a headset. Methods: Acoustic properties of the PAPR system were measured using a head and torso simulator. Audiological tests (tone audiometry, Freiburg speech test, Oldenburg sentence test (OLSA)) were performed in normal-hearing subjects (n = 10) to assess hearing with PAPR. The audiological test setup also included simulation of conditions in which the target speaker used either a PAPR, a filtering face piece (FFP) 3 respirator, or a surgical face mask. Results: Audiological measurements revealed that sound insulation by the PAPR headtop and noise, generated by the blower-assisted respiratory protection system, resulted in significantly deteriorated hearing thresholds (4.0 ± 7.2 dB hearing level (HL) vs. 49.2 ± 11.0
The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development. Keywords: cochlear implant, biomaterials, biocompatibility, electrode, inner ear, cochleostomy, surface functionalization, drug delivery, nanoparticles, coating
Objective: Sensorineural hearing loss leads to the progressive degeneration of spiral ganglion cells (SGC). Next to postoperative fibrous tissue growth, which should be suppressed to assure a close nerve–electrode interaction, the density of healthy SGC is one factor that influences the efficiency of cochlear implants (CI), the choice of treatment for affected patients. Rolipram, a phosphodiesterase-4 inhibitor, has proven neuroprotective and anti-inflammatory effects and might also reduce SGC degeneration and fibrosis, but it has to pass the cellular membrane to be biologically active.
Methods: Lipidic nanocapsules (LNC) can be used as biodegradable drug carriers to increase the efficacy of conventional application methods. We examined the biological effects of rolipram and LNC's core encapsulated rolipram on SGC and dendritic cell (DC) tumor necrosis factor-α (TNF-α) production in vitro and on SGC survival in systemically-deafened guinea pigs in vivo.
Results: Our results prove that rolipram does not have a beneficial effect on cultured SGC. Incorporation of rolipram in LNC increased the survival of SGC significantly. In the DC study, rolipram significantly inhibited TNF-α in a dose-dependent manner. The rolipram-loaded LNC provided a significant cytokine inhibition as well. In vivo data do not confirm the in vitro results.
Conclusion: By transporting rolipram into the SGC cytoplasm, LNC enabled the neuroprotective effect of rolipram in vitro, but not in vivo. This might be due to dilution of test substances by perilymph or an inadequate release of rolipram based on differing in vivo and in vitro conditions. Nevertheless, based on in vitro results, proving a significantly increased neuronal survival when using LNC-rolipram compared to pure rolipram and pure LNC application, we believe that the combination of rolipram and LNC can potentially reduce neuronal degeneration and fibrosis after CI implantation. We conclude that rolipram is a promising drug that can be used in inner ear therapy and that LNC have potential as an inner ear drug-delivery system. Further experiments with modified conditions might reveal in vivo biological effects.
Molecular biology of hearing
(2012)
The inner ear is our most sensitive sensory organ and can be subdivided into three functional units: organ of Corti, stria vascularis and spiral ganglion. The appropriate stimulus for the organ of hearing is sound, which travels through the external auditory canal to the middle ear where it is transmitted to the inner ear. The inner ear houses the hair cells, the sensory cells of hearing. The inner hair cells are capable of mechanotransduction, the transformation of mechanical force into an electrical signal, which is the basic principle of hearing. The stria vascularis generates the endocochlear potential and maintains the ionic homeostasis of the endolymph. The dendrites of the spiral ganglion form synaptic contacts with the hair cells. The spiral ganglion is composed of neurons that transmit the electrical signals from the cochlea to the central nervous system. In recent years there has been significant progress in research on the molecular basis of hearing. An increasing number of genes and proteins related to hearing are being identified and characterized. The growing knowledge of these genes contributes not only to greater appreciation of the mechanism of hearing but also to a deeper understanding of the molecular basis of hereditary hearing loss. This basic research is a prerequisite for the development of molecular diagnostics and novel therapies for hearing loss.
Purpose: Monocentric, prospective study to investigate whether concomitant support of cochlear implant (CI) patients by CI-trained otolaryngologists and application of a standardized head bandage can minimize potential complications during magnetic resonance imaging (MRI).
Methods: Thirty-seven patients with 46 CIs underwent MRI with a prophylactic head bandage. All participants and the otolaryngologist at the CI center completed pre- and post-MRI questionnaires documenting body region scanned, duration of MRI and bandage wear, field strength during the scan, and any complications. If pain was experienced, it was assessed using a visual analog scale (1–10).
Results: MRI was performed without adverse events in 37.8% of cases. Magnet dislocation requiring surgical revision occurred in 2% of cases. Pain was reported in 86% of cases, often due to the tightness of the dressing. Patients with rotating, MRI-compatible magnets reported significantly less pain than participants with older-generation implants. In 11% of cases, the MRI was discontinued.
Conclusion: Serious complications during MRI in cochlear implant patients are rare. Pain is the most common adverse event, probably mainly due to the tight bandage required by most implant types. With newer generations of magnets, these patients experience less pain, no dislocation of the magnets, and no need for bandaging. Although magnet dislocation cannot be completely prevented in older generations of implants, it appears to be reduced by good patient management, which recommends examination under the guidance of physicians trained in the use of hearing implants.
Bilateral simultaneous cochlear implantation is a safe method of hearing rehabilitation in adults
(2023)
Purpose: Bilateral cochlear implantation is an effective treatment for patients with bilateral profound hearing loss. In contrast to children, adults mostly choose a sequential surgery. This study addresses whether simultaneous bilateral CI is associated with higher rates of complications compared to sequential implantation.
Methods: 169 bilateral CI surgeries were analyzed retrospectively. 34 of the patients were implanted simultaneously (group 1), whereas 135 patients were implanted sequentially (group 2). The duration of surgery, the incidence of minor and major complications and the duration of hospitalization of both groups were compared.
Results: In group 1, the total operating room time was significantly shorter. The incidences of minor and major surgical complications showed no statistically significant differences. A fatal non-surgical complication in group 1 was particularly extensively reappraised without evidence of a causal relationship to the chosen mode of care. The duration of hospitalization was 0.7 days longer than in unilateral implantation but 2.8 days shorter than the combined two hospital stays in group 2.
Conclusion: In the synopsis of all considered complications and complication-relevant factors, equivalence of simultaneous and sequential cochlear implantation in adults in terms of safety was found. However, potential side effects related to longer surgical time in simultaneous surgery must be considered individually. Careful patient selection with special consideration to existing comorbidities and preoperative anesthesiologic evaluation is essential.
Objectives: To correlate the radiological assessment of the mastoid facial canal in postoperative cochlear implant (CI) cone-beam CT (CBCT) and other possible contributing clinical or implant-related factors with postoperative facial nerve stimulation (FNS) occurrence. Methods: Two experienced radiologists evaluated retrospectively 215 postoperative post-CI CBCT examinations. The mastoid facial canal diameter, wall thickness, distance between the electrode cable and mastoid facial canal, and facial-chorda tympani angle were assessed. Additionally, the intracochlear position and the insertion angle and depth of electrodes were evaluated. Clinical data were analyzed for postoperative FNS within 1.5-year follow-up, CI type, onset, and causes for hearing loss such as otosclerosis, meningitis, and history of previous ear surgeries. Postoperative FNS was correlated with the measurements and clinical data using logistic regression. Results: Within the study population (mean age: 56 ± 18 years), ten patients presented with FNS. The correlations between FNS and facial canal diameter (p = 0.09), wall thickness (p = 0.27), distance to CI cable (p = 0.44), and angle with chorda tympani (p = 0.75) were statistically non-significant. There were statistical significances for previous history of meningitis/encephalitis (p = 0.001), extracochlear-electrode-contacts (p = 0.002), scala-vestibuli position (p = 0.02), younger patients’ age (p = 0.03), lateral-wall-electrode type (p = 0.04), and early/childhood onset hearing loss (p = 0.04). Histories of meningitis/encephalitis and extracochlear-electrode-contacts were included in the first two steps of the multivariate logistic regression. Conclusion: The mastoid-facial canal radiological assessment and the positional relationship with the CI electrode provide no predictor of postoperative FNS. Histories of meningitis/encephalitis and extracochlear-electrode-contacts are important risk factors.
Meeting Abstract : 82. Jahresversammlung der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie. Freiburg i. Br., 01.-05.06.2011.
Ca. 3 Millionen Erwachsene in der Bundesrepublik Deutschland leiden unter Tinnitus, wobei eine bei jedem dieser Patienten zur Heilung führende Therapie bisher noch nicht existiert. Ansatzpunkt einer neuartigen Therapie ist die Wiederherstellung des normalen elektrischen Entladungsmusters im Hörnerv mittels elektrischer Stimulation. Hiermit berichten wir über unsere ersten Erfahrungen mit dem Tinnelec, einem Implantat mit einer einzelnen Stimulations-Elektrode die in der Rundfensternische platziert wird.
Zurzeit haben wir 4 einseitig ertaubten Patienten mit Tinnitus auf dem betroffenen Ohr jeweils ein Tinnelec-System implantiert. Die Dauer des Tinnitus betrug mindestens ein Jahr und gängige Tinnitus-Therapien wie z.B. Infusionstherapie waren erfolglos geblieben. Ein psychogener Tinnitus wurde ausgeschlossen. Der durch den Tinnitus verursachte Leidensdruck wurde anhand einer VAS Scala (Visuelle Analog Scala) und eines Tinnitus-Handicap-Inventory (THI) Fragebogens beurteilt. Die Reizapplikation betrug mind. 4 Stunden täglich. Als Stimulationsparameter wurde eine Reizmusterannäherung an den Tinnitus angestrebt.
Bei drei Patienten wurde unter der Stimulation der Tinnitus erträglicher, eine zeitweise komplette Unterdrückung des Tinnitus schon innerhalb der ersten Therapie-Wochen wurde jedoch nur in einem der Fälle berichtet. Diese Ergebnisse wurden auch durch das THI und VAS unterstützt.
Die Tinnelec-Implantation erscheint für Tinnitus Erfolg versprechend zu sein. Weitere Studien bei Tinnitus-Patienten ohne zusätzliche Hörbeeinträchtigung sind jedoch notwendig bis endgültige Schlussfolgerungen betreffend dieses Implantats gezogen werden können. In jedem Fall bleibt die Option einer Cochlea-Implantation im selben Ohr, nach Explantation des Tinnelec, bestehen.
Fibrous tissue growth and loss of residual hearing after cochlear implantation can be reduced by application of the glucocorticoid dexamethasone-21-phosphate-disodium-salt (DEX). To date, sustained delivery of this agent to the cochlea using a number of pharmaceutical technologies has not been entirely successful. In this study we examine a novel way of continuous local drug application into the inner ear using a refillable hydrogel functionalized silicone reservoir. A PEG-based hydrogel made of reactive NCO-sP(EO-stat-PO) prepolymers was evaluated as a drug conveying and delivery system in vitro and in vivo. Encapsulating the free form hydrogel into a silicone tube with a small opening for the drug diffusion resulted in delayed drug release but unaffected diffusion of DEX through the gel compared to the free form hydrogel. Additionally, controlled DEX release over several weeks could be demonstrated using the hydrogel filled reservoir. Using a guinea-pig cochlear trauma model the reservoir delivery of DEX significantly protected residual hearing and reduced fibrosis. As well as being used as a device in its own right or in combination with cochlear implants, the hydrogel-filled reservoir represents a new drug delivery system that feasibly could be replenished with therapeutic agents to provide sustained treatment of the inner ear.
Background: With the aging population and a rising incidence of squamous cell carcinoma of the head and neck (SCCHN), there is an emerging need for developing strategies to treat elderly patients.
Patients and Methods: We retrospectively analyzed 158 patients treated with definitive, concurrent chemoradiotherapy (CRT) for SCCHN. Clinicopathological characteristics, acute toxicities, and oncological outcomes were compared between patients younger and older than (or of age equal to) 65, 70, and 75 years.
Results: RT dose, chemotherapy regimen, and total chemotherapy dose were balanced between the groups. After a median follow-up of 29 months, overall survival (OS), progression-free survival (PFS), local control rate, and distant metastasis-free survival stratified by age of ≥65, ≥70, or ≥75 years revealed no differences. The rate of acute toxicities was also not higher for older patients. Worse ECOG performance score (ECOG 2-3) was associated with impaired OS () and PFS ().
Conclusion: Definitive treatment with CRT for SCCHN is feasible and effective; even in advanced age treatment decisions should be made according to general condition and comorbidity, rather than calendar age alone.