Refine
Year of publication
- 2007 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
- Pharmazie (1)
The goal of this thesis was to gain further insight into the binding behavior of ligands in the heptahelical domain (HD) of group I metabotropic glutamate receptors (mGluRs). This was realized by the establishment of strategies for the detection and optimization of molecules acting as non-competitive antagonists of group I mGluRs (mGluR1/5). These strategies should guarantee high diversity in the retrieved chemotypes of the detected compounds not resembling original reference molecules (“scaffold-hopping”). The detection of new scaffolds, in turn, was divided into two approaches: First the development of pharmacological assays to screen compounds at a certain target for bioactivity (here: affinity towards the allosteric recognition site of mGluR1 and mGluR5), and second the evaluation of computer assisted methods for the identification of virtual hits to be screened afterwards on the pharmacological assays established before. Promising molecules should be optimized with respect to activity/affinity and selectivity, their binding mode investigated and, finally, compared to existing lead compounds. Initially, membrane based binding assays for the HD of mGlu1 and mGlu5 receptors with enhanced throughput (shifting from 24-well plates to 96-well plates) were set up. For the mGluR1 assay the potent antagonist EMQMCM exhibited high affinity towards the binding site (Ki ~3nM), which is in accordance with published data from Mabire et al. (functional IC50 3nM). For mGluR5 the reference antagonist MPEP binds with high affinity to the receptor (binding IC50 13.8nM), which confirmed earlier findings from Anderson et al. (binding IC50 15nM). In another series of experiments the properties of rat cerebellar (mGluR1) and corticalmembranes (mGluR5) as well as of radiotracers were investigated by means of binding saturation studies and kinetic experiments. Furthermore, the influence of the solvent DMSO, necessary for compound screening of lipophilic substances, on positive and negative controls was evaluated. As the precise architecture of the HD of mGluR1 is still not known our efforts in identifying new ligands for this receptor focused on the ligand-based approach. All computer assisted methods that were applied to virtually screen large compound collections and to retrieve potential hits (“activity-enriched subsets”) acting at the heptahelical domain of mGluR1 relied on the existence of a valid dataset of reference molecules. This was realized by an initial compilation of a mGluR reference data collection comprising in total 357 entries predominantly negative but also some positive allosteric modulators for mGluR1 and mGluR5. In the next step a pharmacophore model for non-competitive mGluR1 antagonists was constructed. It was based upon six selective, potent and structurally diverse ligands. Prospective virtual screening was performed using the CATS atom-pair descriptor. The Asinex Gold-Collection was screened for each seed compound and some of the most similar compounds (according to the CATS descriptor) were ordered and tested forbinding affinity and functional activity at mGluR1. A high hit rate of approximately 26% (IC50 < 15 micro M) was yielded confirming the applicability of this method. One compound exerted functional activity below one micro molar (IC50-value of C-07:362nM ± 0.03). Moreover, non-linear principal component analysis was employed. Again the Asinex vendor database served as test database and was filtered by the pharmacophore model for mGluR1 established before. Test molecules that were adjacently located with mGluR1 antagonist references were selected. 15 compounds were tested on mGluR1 in binding and functional assays and three of them exhibited functional activity (IC50) below 15 micro M. The most potent molecule P-06 revealed an IC50-value of 1.11 micro M (± 0.41). The COBRA database comprising 5,376 structurally diverse bioactive molecules affecting various targets was encoded with the CATS descriptor and used for training two selforganizing maps (SOM). The encoded mGluR reference data collection was projected onto this map according to the SOM algorithm. This projection allowed to clearly distinguish between antagonists of mGluR1 and mGluR5 subtype. 28 compounds were ordered and tested on activity and affinity for mGluR1. They exhibited functional activity down to the sub-micro molar range (IC50-value of S-08: 744nM ± 0.29) yielding a final hit rate of 46% (<15 micro M). Then, the Asinex collection was screened using the SOM approach. For a predicted target panel including the muscarinic mACh (M1) receptor, the histamine H1-receptor and the dopamine D2/D3 receptors, the tested mGluR ligands exhibited the calculated binding pattern. This virtual screening concept might provide a basis for early recognition of potential sideeffects in lead discovery. We superimposed a set of 39 quinoline derivatives as non-competitive mGluR1 antagonists that were recently published by Mabire and co-workers. A CoMFA model (QSAR) was established and the influence of several side chains on functional activity was investigated. The coumarine derivative C-07 was obtained as a result of similarity searching. Starting from this compound a series of chemical derivatives was synthesized. This led to the discovery of potent (B-28, IC50: 58nM ± 0.008; Ki: 293nM ± 0.022) and selective (rmGluR5 IC50: 28.6 micro M) mGluR1 antagonists. From a homology model of mGluR1 we derived a potential binding mode for coumarines within the allosteric transmembrane region. Potential interacting patterns with amino acids were proposed considering the difference of the binding pockets between rat and human receptors. The proposed binding modes for quinolines (here:EMQMCM) and coumarines (here:B-04) were compared and discussed considering in particular the influence on activity of several side chains of quinolines obtained from the QSAR studies. The present studies demonstrated the applicability of ligand-based virtual screening for non-competitive antagonists of a G-protein coupled receptor, resulting in novel, potent and selective agents.